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We introduce a simple model based on the Moran process with network dynamics. Using pair approximation, the
cooperation frequencies at equilibrium states are deduced for general interactions. Three usual social dilemmas
are discussed in the framework of our model. It is found that they all have a phase transition at the same value
of cost-to-benefit ratio. For the prisoner’s dilemma game, notably it is exactly the simple rule reported in the
literature [Nature 441 (2006) 502]. In our model, the simple rule results from the parent-offspring link. Thus the
basic mechanism for cooperation enhancement in network reciprocity is in line with the Hamilton rule of kin
selection. Our simulations verify the analysis obtained from pair approximation.

PACS: 89. 75. Fb, 02. 50. Le, 87. 23.−s, 87. 23. Ge

Cooperation, which is essential for the construc-
tion of a new level of organization, has been expected
to be a third fundamental principle of evolutionary
dynamics apart from mutation and selection.[1] Dar-
winian evolution represents an intrinsically frequency-
dependent process.[2,3] The fitness of an individual is
determined by environmental condition as well as the
frequency of its competitors.[4] How can Darwinian
dynamics based on mutation and selection lead to
cooperation? The evolutionary game theory[5,6] pro-
vides a common mathematical framework for mod-
elling the dynamics of evolution. Traditionally, the
well-known replicator equation[2] describes the change
in frequency of the two types in infinite populations.
In nature, stochastic effects and random drift disturb
the deterministic selection process when populations
are finite in size.[7] The Moran process[8] has been in-
troduced to describe the balance between selection
and drift with a finite but constant population size.
However, both the replicator equation and the Moran
process tell us that defection dominates over cooper-
ation in the well-mixed population.

Hence, the evolution of cooperation needs spe-
cific mechanisms which allow natural selection to fa-
vor cooperation over defection. Several such mecha-
nisms including kin selection,[9] direct reciprocity,[10]

indirect reciprocity,[11] group selection,[12] network
reciprocity,[13−15] and so on have been broadly investi-
gated. Network reciprocity, such as spatial reciprocity
[16] and heterogeneous reciprocity,[17−20] is well recog-
nized as one of the key mechanisms for the evolution
of cooperation. Generally, it is reported that coop-
eration is viable in the death-birth Moran process on
various graphs only if 𝑘 < 𝑏/𝑐,[21] where 𝑘 is the av-
erage degree (number of neighbors) of the network,
and 𝑏 and 𝑐 are the benefit for defectors and cost for
cooperators, respectively, when cooperators meet de-

fectors. Recently, similar results have also been re-
ported in Ref. [22] on a stochastic nongrowth network
evolution model. In that model the offspring inher-
its a strategy of its parent and definitely links to its
parent. In fact, this parent-offspring link leads assor-
tative players to be closer and disassortative players
to be alienated. This mechanism is also an implicit
assumption for network reciprocity and is not so ob-
vious to be paid much importance. Their results are
in line with Hamilton’s rule of kin selection,[9] which
is that frequent kin interactions promote cooperation.

In this Letter, we introduce a simple model of
the coevolution based on the Moran process and the
above mechanism of parent-offspring link with dynam-
ical networks. Importantly, our work shows that it is
just the parent-offspring link that Darwinian dynam-
ics based on selection can take advantage of network
structure to enhance cooperation, even though the
network evolves. Thus this parent-offspring link plays
a key role in network reciprocity, especially when the
strategy dynamics co-evolve with the network struc-
ture. Firstly, we derive the cooperation frequency
at equilibrium state by pair approximation and then
discuss three usual social dilemmas: The prisoner’s
dilemma game (PD),[10] the snowdrift game (SG),[16]

and the boundary prisoner’s dilemma (BPD). In the
framework of our model, we find that they all have a
phase transition at the same value of cost-to-benefit
ratio 𝑟. Our result expands the simple transition
rule reported in Ref. [21] in the PD to SG and BPD
cases. In PD, it is a first order transition, while in SG
and BPD, it is a continuous phase transition. In our
model, the simple rule results just from the parent-
offspring link. We also verify our analysis with nu-
merical simulations.

In our model, the players occupy the vertices of a
graph. The edges denote links between individuals in
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terms of game interaction but not replacement. We
assume that the graph varies only when reproduction
and death occur. The interaction is represented by
the social dilemmas associated with symmetric 2 × 2
games between two pure strategies, cooperators 𝐶 and
defectors 𝐷, in which the payoff matrix is given by

𝐶 𝐷

𝐶 𝑅 𝑆
𝐷 𝑇 𝑃

.

The entries refer to payoffs of the row player. In the
payoff matrix, 𝑅 is the reward for mutual cooperation;
𝑃 is the punishment for mutual defection. When a co-
operator meets a defector, the former gets the sucker’s
payoff 𝑆 and the latter gets the temptation to defect
𝑇 . The orderings of the four values define different
well-known social dilemmas: the prisoner’s dilemma
game (PD) (𝑇 > 𝑅 > 𝑃 > 𝑆) and the snowdrift game
(SG) (𝑇 > 𝑅 > 𝑆 > 𝑃 ).

Initially, the players interconnect randomly to
make up a random network with the average degree
𝑘 and adopt either strategy 𝐶 or 𝐷 with equal prob-
ability. Each individual plays with all his neighbors
along the network, accumulating a total payoff 𝜋𝐶 =
𝑘𝐶𝑅+𝑘𝐷𝑆 for the cooperator or 𝜋𝐷 = 𝑘𝐶𝑇 +𝑘𝐷𝑃 for
the defector, where 𝑘𝐶 and 𝑘𝐷 denote the numbers of
𝐶 and 𝐷 players among its 𝑘 neighbors. The effective
reproductive fitness of an individual of type 𝑋 is then
given by 1−𝜔 +𝜔𝜋𝑋 , where 𝜔 determines the relative
contributions of the baseline fitness and the payoff 𝜋𝑋

resulting from interactions with its neighbors. Then,
we conduct the Moran process with dynamical net-
works as follows:

(i) Selection. An individual is selected for repro-
duction with a probability proportional to his fitness.

(ii) Reproduction. His offspring is introduced with
the same strategy of his parent and connects to his
parent always and other 𝑘 − 1 individuals randomly.

(iii) Replacement. The offspring replaces a ran-
dom individual except for his parent. Remove the
randomly selected individual with all his links.

Here we employ global selection different from the
model in Ref. [21], where their model is based on tour-
nament selection. Firstly they randomly choose a
group from the population for tournament and then
select an individual with highest payoff in this group
for reproduction. Thus in every generation the indi-
vidual with lowest payoff in the population will has
no chance to reproduce in their model. Thus, their
model is a little deviated from the Moran process. In
addition, our model can facilitate the analysis by pair
approximation.

Now, we apply pair approximation[16,23−25] to de-
duce the steady state of the system. Let 𝑃𝐶 and 𝑃𝐷

denote the frequencies of 𝐶 and 𝐷 in the popula-
tion. Let 𝑃𝐶𝐶 , 𝑃𝐶𝐷, 𝑃𝐷𝐶 , 𝑃𝐷𝐷 denote the frequencies

of 𝐶𝐶,𝐶𝐷,𝐷𝐶, 𝐷𝐷 pairs. Let 𝑞𝑋|𝑌 denote the con-
ditional probability to find an 𝑋-player given that the
adjacent node is occupied by a 𝑌 -player. The whole
system can be described by only two variables, 𝑝𝐶 and
𝑝𝐶𝐶 , with the identities[21]

𝑝𝐶 + 𝑝𝐷 = 1, 𝑞𝐶|𝑋 + 𝑞𝐷|𝑋 = 1,

𝑝𝑋𝑌 = 𝑞𝑋|𝑌 · 𝑝𝑌 , 𝑝𝐶𝐷 = 𝑝𝐷𝐶 . (1)

The replicator dynamics of 𝑝𝐶 is given as

𝜕𝑝𝐶

𝜕𝑡
=

1
𝑁

𝑝𝐷
𝑝𝐶𝑓𝐶

𝑓
− 1

𝑁
𝑝𝐶

𝑝𝐷𝑓𝐷

𝑓

=
𝑝𝐶𝑝𝐷

𝑁𝑓
(𝑓𝐶 − 𝑓𝐷), (2)

where the fitness of 𝐶-players and 𝐷-players read{︂
𝑓𝐶 = 1− 𝜔 + 𝜔(𝑘𝑞𝐶|𝐶𝑅 + 𝑘𝑞𝐷|𝐶𝑆),
𝑓𝐷 = 1− 𝜔 + 𝜔(𝑘𝑞𝐶|𝐷𝑇 + 𝑘𝑞𝐷|𝐷𝑃 ),

(3)

the mean fitness is

𝑓 = 𝑝𝐶𝑓𝐶 + 𝑝𝐷𝑓𝐷. (4)

In Eq. (2), the first term denotes that a 𝐷-player is
randomly selected to die and a 𝐶-player is selected
for reproduction proportional to his fitness and the
second term is derived vice verse.

The evolution of 𝑝𝐶𝐶 can be described as

𝜕𝑝𝐶𝐶

𝜕𝑡
=

𝑝𝐶𝑓𝐶

𝑝𝐶𝑓𝐶 + 𝑝𝐷𝑓𝐷

1 + (𝑘 − 1)𝑝𝐶

𝑘𝑁/2
− 𝑝𝐶

𝑘𝑁/2
𝑘𝑞𝐶|𝐶 ,

(5)
where the first term denotes that a 𝐶-player is selected
to reproduce with probability proportional to his fit-
ness and his offspring links to him and (𝑘−1)𝑝𝐶 other
𝐶-players in the population in average. The other
term denotes that a 𝐶-player, who links to 𝑘𝑞𝐶|𝐶 𝐶-
players in pair approximation, is randomly selected to
die with probability 𝑝𝐶 . There are always 𝑘𝑁/2 edges
in the network approximately. When the system reach

stable state,
𝜕𝑝𝐶

𝜕𝑡
= 0 and

𝜕𝑝𝐶𝐶

𝜕𝑡
= 0, which can be

reduced to
𝑓𝐶 = 𝑓𝐷, (6)

1 + (𝑘 − 1)𝑝𝐶 = 𝑘𝑞𝐶|𝐶 . (7)

Equation (6) tells us that 𝐶 and 𝐷 players have the
same fitness in average at the stable system. Under
this condition, the strength of selection 𝜔 will be can-
celled out implying that our model is valid with any
strength of selection. Equation (7) is of identity with

𝑘(𝑞𝐶|𝐶 − 𝑝𝐶) = 𝑝𝐷, (8)

which indicates that the 𝐶-players in our model al-
ways get closer than that of the well-mixed condition
at the stable state and the more 𝐷-players in the pop-
ulation, the closer 𝐶-players get together just due to
this parent-offspring link. Then the 𝐶-players will
get more benefits by assortative reciprocity so as to
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promote cooperative behavior. We also find that the
larger the average degree 𝑘 is, the less important this
parent-offspring link performs and the weaker the as-
sortative effect is.

With the identity

𝑞𝐶|𝐷 =
𝑝𝐶

1 − 𝑝𝐶
(1− 𝑞𝐶|𝐶), (9)

we can reach

𝑝𝐶 =

{︃
1 + 1

𝑘−1
𝑅−𝑃−(𝑘−1)(𝑇−𝑅)

𝑇+𝑆−𝑅−𝑃 , 𝑇−𝑅
𝑅−𝑃 > 1

𝑘−1 ,

1, 𝑇−𝑅
𝑅−𝑃 < 1

𝑘−1 ,
(10)

from Eqs. (6) and (7). Note that the system undergoes
a phase transition at

𝑇 −𝑅

𝑅− 𝑃
=

1
𝑘 − 1

, (11)

either first-order or second-order, dependent on the
value of 𝑇 + 𝑆 −𝑅− 𝑃 .

Our model can be used to discuss different social
dilemmas, such as PD and SG. In the PD, a coopera-
tor incurs a cost 𝑐 to the donor and results in a benefit
𝑏 to the recipient with 𝑏 > 𝑐 > 0, but a defector has
no cost and does not deal out benefits. In evolution-
ary biology, cost and benefit are measured in terms of
reproductive success. Reproduction can be genetic or
cultural. The payoff matrix for the PD is given as

𝐶 𝐷

𝐶 1 −𝑟
𝐷 1 + 𝑟 0

with 𝑟 = 𝑐/(𝑏 − 𝑐) being the cost-to-benefit ratio for
cooperation in the normalized form. In this game,
𝑇 − 𝑃 − 𝑅 + 𝑆 = 0, which is in game theory some-
times referred to as “equal gains from shifting”. The
system undergoes a first-order phase transition at the
critical value 𝑟𝑐 = 1/(𝑘 − 1) between 1 and 0. The
population will evolve to a homogenous state with all
cooperators when 𝑟 < 𝑟𝑐 or all defectors when 𝑟 > 𝑟𝑐.
This is exactly the simple rule 𝑏/𝑐 > 𝑘 for network
reciprocity in Ref. [21]. Our model indicates that this
simple rule comes out just due to this parent-offspring
link, which is the basis of kin selection in Hamilton’s
rule for cooperation. In our simple model, the sim-
ple rule is satisfied in any strength of selection. The
strength of selection does not affect the equilibrium
frequency but just affects the convergent velocity.

In the SG,[16,26−29] imagine two drivers on their
way home that are caught in a blizzard and trapped
on either side of a snowdrift. Each driver has the op-
tion to get out and start shovelling or to remain in
the cozy warmth of the car. If both start shovelling
each has the benefit 𝑏 of getting home while sharing
the labor costs 𝑐 with 𝑏 > 𝑐 > 0. However, if only one
shovels both drivers still get home but the lazy bum

avoids the labor costs. Thus, the payoff matrix for the
SG can be given as

𝐶 𝐷

𝐶 1 1− 𝑟
𝐷 1 + 𝑟 0

with 𝑟 = 𝑐/(2𝑏 − 𝑐) being the cost-to-benefit ratio of
mutual cooperation in the normalized form. As a re-
sult, evolution under replicator dynamics carried out
in well-mixed populations leads to an equilibrium fre-
quency for cooperators given by 1−𝑟. But cooperation
is inhibited whenever evolution in the SG takes place
in a spatially structured population. Our model gives
out

𝑝𝐶 =
{︂

1− 𝑟 + 1/(𝑘 − 1), 𝑟 > 1/(𝑘 − 1),
1, 𝑟 < 1/(𝑘 − 1),

(12)

which enhances cooperation compared to mixed pop-
ulation for any 𝑟. A continuous phase transition can
also be found at 𝑟𝑐 = 1/(𝑘 − 1). The parent-offspring
link is also the key role in enhancing cooperation.

Let us consider another game with payoff ordering
𝑇 > 𝑅 > 𝑆 = 𝑃 between PD and SG, which has often
been considered to be qualitatively equal to the PD
game in the previous studies. Here we refer to it as
boundary PD (BPD). The payoff matrix is commonly
chosen as

𝐶 𝐷

𝐶 1 0
𝐷 1 + 𝑟 0

with 𝑟 being the cost-to-benefit ratio in the normal-
ized form. In this game, the system also goes through
a continuous transition at 𝑟𝑐 = 1/(𝑘 − 1). The equi-
librium frequencies of cooperators 𝑝𝐶 are given as

𝑝𝐶 =
{︂ 1

(𝑘−1)𝑟 , 𝑟 > 𝑟𝑐,

1, 𝑟 < 𝑟𝑐,
(13)

which indicates that the assortative link can promote
cooperation greatly when 𝑘 is small.

Fig. 1. Cooperation frequencies as a function of 𝑘 − 1 =
[5, 7, 8, 10, 14, 20, 30, 40, 60, 80] with various system size 𝑁 .
The simulations are carried out on BPD with 𝑟 = 0.2 and
the analytical results are derived from pair approximation.
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Now we do some simulations to verify our analytic
discussions. In our simulations, each time step in-
volves 𝑁 three-step circular procedures in our model.
As mentioned in Ref. [30], stochastic replication with-
out mutation will enter one of the absorbing states
eventually in any finite system. However the time to
absorption is dependent on the system size and may
be beyond our computing abilities. Thus we just re-
fer to the transient states as equilibrium. Equilib-
rium frequencies of cooperators (𝑝𝑐) are averaged over
100 time steps after a transient of 200 time steps.
Our results are averaged on 100 different initial con-
ditions. Here we employ global selection different
from the model in Ref. [22], where they first choose
a group from the population randomly and then per-
form selection on this group. Although their model
has less time-cost for simulation, it is a little devia-
tion from the Moran process. However, our simula-
tions, as shown in Fig. 1, confirm that their results
are very consistent with ours which are based on the
Moran process. We verify their results that the small
system size introduces large fluctuation which leads
the results to deviate from pair approximation predic-
tions.

Fig. 2. (a) Cooperation frequencies as a function of av-
erage degree 𝑘 for various 𝑟 in BPD. The results are con-
sistent with analysis. (b) Cooperation frequencies as a
function of 𝑟 in various social dilemmas with 𝑘 = 6. All
of them have a phase transition at 𝑟 = 0.2, either first-
order or continuous, which are predicted by pair approxi-
mation in main text. In both cases the system size is set
as 𝑁 = 1000, except for the conditions near the critical
point, where we simulate with 𝑁 from 2000 to 20000.

We also confirm the analytical results from pair
approximation with numerical simulation as shown in
Fig. 2. When the system size is large enough with
the fluctuation being ignored, the simulated results fit
well with the analytical results, whatever the coopera-
tion frequency depends on average degree 𝑘 (Fig. 2(a))
or the cost-to-benefit ratio 𝑟 (Fig. 2(b)) in any of last
three social dilemmas. Note that simulations verify
the phase transitions at the same critical point for all
dilemmas.

In summary, a simple model based on the Moran
process with network dynamics has been discussed by
theoretical analysis and numerical simulations. Us-
ing pair approximation, the cooperation frequencies at
equilibrium states are deduced to discuss three usual
social dilemmas: PD, SG and BPD. In the framework
of our model, we find that they all have a phase tran-
sition at the same value of cost-to-benefit ratio. Our
result expands the simple transition rule reported in
Ref. [21] in the PD to SG and BPD cases. In PD, it is
a first order transition, while in SG and BPD, it is a
continuous phase transition. In our model, the simple
rule results just from the parent-offspring link. Thus
the basic mechanism for cooperation enhancement in
network reciprocity is in line with Hamilton’s rule of
kin selection.
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