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It has been shown that, in models of excitable clusters of voltage-gated sodium channels, the spontaneous
rate of action potential and signal encoding ability exhibit multiple peaks at different cluster sizes due to an
entropy effect in small system. In this paper, we show that similar results can be found in excitable cluster of
ligand-gated calcium channels. Furthermore, we demonstrate that the periodicity of spontaneous Ca2+ spikes
elicited by the cluster reveals multiple maxima at small discrete cluster sizes.
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I. INTRODUCTION

It is widely known that noise can be used to enhance or
induce periodicity in nonlinear nonequilibrium systems
through mechanisms such as stochastic resonance �1,2�.
Common to most of these studies is that noise has been
added externally to subthreshold systems. At a given tem-
perature, a certain level of intrinsic noise is always present
due to the thermal fluctuations. The effects of intrinsic noise
and its cellular functions have recently become a topic of
interest in the study of biological systems �3–5�.

In cellular systems, ionic channels change their conforma-
tions thermally and visit their open state on occasion, leading
to intrinsic thermal conductance fluctuations. It is known that
many channels and receptors are distributed in clusters
�6–9�. For small cluster of channels, the intrinsic channel
noise cannot be ignored and intrinsic stochastic resonance
and coherence resonance can be found in terms of cluster
size �10–13�.

In the recent study of clusters of sodium channels �14,15�,
we showed that the rate of spontaneous action potentials and
the signal encoding ability exhibit multiple maxima at small
cluster sizes. A simple microcanonical theory and a combi-
natorial theory for the cluster entropy have been put forward
to explain the multiple peaks observed in the sodium channel
system.

In this paper, we show that there is a similar effect for
elemental intracellular calcium signals, generated by small
clusters of calcium channels. A calcium signal denotes a
transient increase of intracellular calcium facilitated by the
release from internal �calcium-rich� stores, most notably the
endoplasmic reticulum �ER�, through ligand-gated release
channels, i.e., the inositol 1,4,5-trisphosphate receptors
�IP3Rs�, distributed on the ER membrane �16�. Binding of
extracellular agonist, such as glutamate or hormones, to me-
tabotropic receptors generates the second messenger IP3
which sensitizes the IP3Rs upon binding. If cytosolic calcium
binds a sensitized channel, the channel opens and calcium is
released from the stores into the cytosol where it can open

other channels. This leads to a rapid increase of cytosolic
calcium which terminates upon channel inhibition and extru-
sion mechanisms. Such intracellular calcium signals regulate
numerous physiologic processes in living cells �17�. For ex-
ample, it has been shown that the sustained plateau IP3 or the
oscillating IP3 concentration can produce an oscillation in
cytosolic calcium �18�. The oscillation of calcium increases
both the efficacy and the information content of Ca2+ signals
that lead to gene expression and cell differentiation �19�. The
Ca2+ oscillation with frequency at roughly physiological
rates can maximize gene expression �18�.

Recently, it has been shown that IP3Rs are organized in
clusters with a few or a few tens of IP3Rs, resulting in local-
ized Ca2+ release events, termed Ca2+ puffs or sparks
�9,20–23�. These localized events are the building blocks for
calcium signals on larger scales, such as cellular oscillations
and waves. For the small number of channels per cluster,
puffs appear stochastic with broadly distributed amplitudes
and durations. The hierarchical organization of the calcium
signals from stochastic puffs to intercellular waves has been
in the limelight of recent investigations �23–27�. An espe-
cially interesting question is how periodicity of Ca2+ signals
can emerge from stochastic channel dynamics. The conven-
tional paradigm is that periodicity emerges only in the limit
of large number of channels through synchronization of clus-
ters. Here, we propose the radically different paradigm that
enhanced periodicity can also occur with few channels, but
only at “magic” cluster sizes.

We show here with a simple IP3R channel model sug-
gested by Li and Rinzel �28� that enhanced spontaneous
spiking rates and signal encoding capability to weak stimuli
can be found for stochastic puff releases at a discrete set of
cluster sizes. Furthermore, we demonstrate that the periodic-
ity of spontaneous Ca2+ spikes elicited from small clusters of
IP3Rs can be enhanced at a discrete set of cluster sizes.

II. MODEL

We now consider the model of calcium release through a
small patch of an isolated ER membrane with an area of S.
Assume there are N IP3Rs distributed uniformly over the
patch. The equation of continuity in conjunction leads to the
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balance equation for areal cytosolic calcium concentrations
C �i.e., two dimensional�

dC

dt
=

1

S
��z��IChannel + ILeak − IPump� , �1�

where IChannel describes the total current of calcium from the
ER to the cytosol through all NOpen IP3Rs. IPump describes
calcium uptake current from the cytosol into the ER by ATP-
dependent pumps. ILeak describes nonspecific leak current
from the ER to the cytosol. The ER membrane is located in
the x-y plane.

If each IP3R occupies an average area of SChannel in the ER
membrane, i.e., S=NSChannel, and the current through a single
open IP3R is denoted by gChannel�CER−C�, we can rewrite Eq.
�1�, after integrating over z, as follows

dC

dt
=

NOpen

N
vC�CER − C� + JL − JP, �2�

with the channel flux rate vC=gChannel /SChannel. Here, JP and
JL describe the pump and leak flux density, respectively, with
�28�

JP =
IPump

S
= vP

C2

C2 + k2 , �3�

JL =
ILeak

S
= vL�CER − C� , �4�

with vP the maximal pump flux density, vL the leakage rate,
and CER the constant concentration of calcium in ER pool.

The number of open channels is determined by using a
specific model for the IP3R. Here we use the Li-Rinzel
model, in which the IP3R has three equivalent and indepen-
dent subunits �28�. Each subunit has one binding site for IP3
and two binding sites for Ca2+: one for activation and the
other for inhibition. The subunit is activated if IP3 is bound
and Ca2+ is bound to the activating binding site. The binding
rates for IP3 and for Ca2+ to the activating binding site are
much larger than for Ca2+ to the inhibiting binding site.
Within a quasisteady state approximation, the fractions of
subunits with IP3 bound and Ca2+ bound to the activating
binding site are given by

m� =
P

P + dm
,

n� =
C

C + dn
, �5�

respectively, where P denotes the IP3 concentration. The
binding and dissociation rates of Ca2+ to the inhibiting bind-
ing site are given by

�h = a1
P + d1

P + d2
,

�h = a2C . �6�

The IP3R is open only when all three subunits are acti-
vated. The fraction of open IP3Rs is given by the product of

the fraction of IP3Rs with bound IP3 and activating Ca2+, i.e.,
m�

3 n�
3 , and the fraction of disinhibited IP3Rs, i.e.,

�Ndisinhibition /N�. Hence, the channel flux density can be writ-
ten as

JC = vC�Ndisinhibition

N
�m�

3 n�
3 �CER − C� . �7�

In cases where we have only few channels N, the opening
and closing of the channels have to be modeled stochasti-
cally using a Markov approach �29�.

In the limit of large numbers of IP3Rs, we can use rate
equation to determine the fraction of open channels. Here,
the channel flux density is given by

JC = vCh3m�
3 n�

3 �CER − C� , �8�

where h satisfies the relaxation equation �28�

dh

dt
= �h�1 − h� − �hh . �9�

The model parameters in Eqs. �1�–�4� and �6�–�8� are
given as vC=80.0 s−1, vP=15.0 �M /s, vL=0.22 s−1, k
=0.025 �M, CER=3.0 �M, dm=0.13 �M, dn=0.02 �M,
a1=0.84 s−1, a2=3.2 �M−1 s−1, d1=0.13 �M, and d2
=0.9 �M.

III. DYNAMICS OF THE DETERMINISTIC MODEL

First, we study the behavior of the model in the limit of
large numbers of channels where we can use rate equation.
The corresponding differential equations are solved numeri-
cally. A bifurcation diagram for C as a function of the IP3
concentration P is shown in Fig. 1�a�. A Hopf bifurcation
point is found at P=0.259 �M. We call from now on the
values of P below the Hopf bifurcation the subthreshold val-
ues.

For a given subthreshold value of P, we perturb h by
increasing it instantly from its steady state hS to a larger
value hS+�h. For a perturbation larger than a threshold
�hMin, a spike will be elicited. Corresponding to such a
threshold, there is a minimal fraction of disinhibited channels
�Min= �hS+�hMin�3 to trigger a spike. The minimal fraction
�Min is plotted as a function of P in Fig. 1�b�. The figure
suggests that spikes can be elicited for P�0.17 �M.

IV. MAGIC CLUSTER SIZES IN SUBTHRESHOLD
REGION

Since the fluctuations of the fraction of open channels,
i.e., Ndisinhibition /N, is of the order 1 /N, conductance fluctua-
tions increase with decreasing number of channels. For small
numbers of channels, therefore, the rate equations used
above are not viable and have to be replaced by a stochastic
simulation of the opening and closing of the IP3Rs �see �29��.
As a result, the initiation of calcium signals is stochastic. As
an example, we show the calcium concentration and the
number of disinhibited IP3Rs for a cluster of five IP3Rs at the
subthreshold IP3 concentration of P=0.2 �M �see Fig. 2�.
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One can see that stochastic spikes occur when Ndisinhibition
�4.

The spiking rate � is plotted as a function of the number
of channels N in Fig. 3�a� at P=0.2 �M. One can observe
peaks of the spiking rate at multiple cluster sizes.

A simple explanation for the peaks has been suggested for
subthreshold P �14�. In order to trigger a spike, the fraction
of disinhibited channels must exceed �Min. Thus, of the N
channels in the cluster, there should be at least �MinN chan-
nels disinhibited in order to elicit a spike. As an example, for
a cluster with N=5 channels at P=0.2 �M, we find �Min
=0.798 �Fig. 1�b�� and �MinN=3.99. Hence, there are two
microstates, i.e., four and five disinhibited channels, related
to the spiking state among a total of six microstates �i.e., 0,
1,…, 5 disinhibited channels� �Fig. 2�. In general, for a clus-
ter of N channels with N+1 disinhibited microstates, there
are

M�N� = int�N + 1 − �MinN� �10�

microstates associated with the firing state. Assuming that
each microstate has the same chance to occur, an entropy
density 	 can be defined as �14�

	�N� =
M�N�
N + 1

=
int�N + 1 − �MinN�

N + 1
. �11�

This entropy density is plotted in Fig. 3�b� for �Min=0.798 at
P=0.2 �M.

Figures 3�a� and 3�b� show that the peaks of the entropy
density 	 as a function of N coincide exactly with the peaks
in the spiking rate ��N� up to N=45. For small N, the integer
function M�N� in the numerator of Eq. �11� increases in large
steps, with plateaus in between. Therefore, the fraction 	�N�
of the integer function M�N� and the monotonically increas-
ing number N+1 exhibits peaks at the steps of M�N�.

The argument presented here is of course not exact, since
not all microstates have the same probability. But it suggests
that the discreteness of the fractions of small integer numbers
is responsible for the peaks—details of the complex channel
dynamics are not relevant.

A more accurate theory has also been suggested to explain
the multiple peaks of spiking rate �14�. At a given subthresh-
old IP3 concentration P, the probability that Ndisinhibition of N
channels are disinhibited and thus the other N−Ndisinhibition
channel are inhibited is given by the binomial distribution

pN�Ndisinhibition� = �Ndisinhibition

N
�h�

Ndisinhibition�1 − h��N−Ndisinhibition,

�12�

with

FIG. 1. Dynamics of the deterministic Li-Rinzel model. �a� Bi-
furcation diagram for C as a function of P. �b� Minimal h-open
fraction �Min which is necessary to trigger a spike as a function of
subthreshold P.

FIG. 2. �a� Calcium concentration and �b� number of disinhib-
ited IP3Rs for a cluster of five IP3Rs at the subthreshold IP3 con-
centration of P=0.2 �M.

FIG. 3. �a� Spiking rate � is shown as a function of N at P
=0.2 �M. The entropy density �Eq. �11�� and the combinatorial
probability �Eq. �14�� are shown in �b� and �c�, respectively, with
�Min=0.798.
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h� =
�h

�h + �h
. �13�

According to Eq. �6�, h� is a function of C and P. Here we
replace C by the steady-state value of the system at sub-
threshold P. The sum of the probabilities pN�Ndisinhibition� for
all the states, in which the fractions of disinhibited channels
are larger than or equal to �Min, is defined as the combinato-
rial probability, i.e.,


 = �
n=NMin

N

pN
n , �14�

with

NMin = int��MinN� + 1. �15�

The combinatorial probability 
 as a function of N at P
=0.2 �M is given in Fig. 3�c�. It can be seen that the com-
binatorial probability exhibits peaks at exactly the same sys-
tem sizes as those for spiking rate and entropy density.

V. SPIKE PERIODICITY ENHANCED AT MULTIPLE
CLUSTER SIZES

In this section, we study the periodicity of the calcium
signals released from clustered IP3Rs because of its impor-
tance for the cell functions �18,19�. To this end, we generate
the interspike-interval distributions �ISIs�, i.e., the probabil-
ity densities of time intervals between two successive spikes.
In Fig. 4�a�, we compare the ISIs at various small cluster
sizes, i.e., for N=9, 10, 14, 15, and 19, for a subthreshold IP3
concentration of P=0.2 �M. Comparing the ISI distribu-
tions given in Fig. 4�a� to Fig. 3, it is quite striking that the

distributions are narrower and more peaked for cluster sizes
where the maximum spiking rates are observed. The nar-
rower ISI distributions at N=10 and 15 indicate a higher
temporal periodicity of the spiking signal than those at N
=9, 14, and 19.

In order to quantify the diversity of the ISI distribution,
we define the index HISI as the ratio of the maximum and the
width at half maximum amplitude. A large value of HISI in-
dicates a narrow ISI distribution. In Fig. 5�a�, the ISI index
HISI is plotted as a function of N. Comparing to Fig. 3, one
can see that the ISI index HISI exhibits peaks at exactly the
same system sizes where the firing rates exhibit maxima
�Fig. 3�.

In order to verify that the decreased width of the ISIs
indeed are associated with larger periodicity of the calcium
signal, we calculate the power spectrum of the interspike-
interval time series. The power spectrum is defined by the
Fourier transform of the correlation function �see, e.g., �11��

S�f� =
1

TN
���

i=1

N

sin�2�fTi��2

+ ��
i=1

N

cos�2�fTi��2	 .

�16�

In our simulation, 10 000 successive spikes are used to cal-
culate the power spectrum according to above equation. The
final power spectrum is averaged over 100 spike trains and
then smoothed with adjacent-averaging method. The power
spectra are shown in Fig. 4�b� at N=4, 15, 20, 24, and 38. It
can be seen that a small peak is observed around f

0.1 Hz, which indicates the appearance of a weak period-
icity in ISI time series. The small peak heights in comparison
to the stochastic fluctuations in the power spectrum due to a
finite-length time series indicates, however, that the period-
icity effect is weak.

FIG. 4. �a� Interspike-interval distribution for N=9, 10, 14, 15,
and 19 and �b� power spectra of the interspike-interval time series
for N=4, 15, 20, 24, and 38. Here, P=0.2 �M

FIG. 5. Periodicity of spontaneous calcium spikes. �a� The ISI
index HISI and �b� the power spectrum index HPower as a function of
N at P=0.2 �M.
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We present an index HPower, which is defined as the peak
height above the flat plateau, to characterize the periodicity
of spontaneous Ca2+ spikes. In Fig. 5�b�, the index HPower is
plotted as a function of N. Because the periodicity of spon-
taneous calcium spikes is weak, a rough curve for the plot of
HPower is obtained. Nevertheless, one can still find that the
multiple peaks for HPower occur at the similar cluster sizes for
spiking rate given in Fig. 3. This suggests that the enhanced
periodicity at multiple cluster sizes is based on the same
algebraic small-number effect, distinctly different from co-
herence resonance found in noise-driven excitable systems
�30�.

VI. MULTIPLE CLUSTER SIZES FOR THE ENCODING
OF WEAK SIGNALS

Binding of extracellular agonists �e.g., hormones or neu-
rotransmitter� to metabotropic receptors in the cell mem-
brane modulates the intracellular IP3 concentration �18�. A
larger concentration of extracellular agonist will generate
more IP3 and hence a stronger response in intracellular cal-
cium. A small amount of agonist may not result in a cellular
calcium response at all �Fig. 1�a��. To test the dynamic re-
sponse of the calcium signaling machinery to binding of ago-
nist, we modulate the IP3 concentration periodically and ana-
lyze the resulting calcium spikes. It is shown that the cellular
response to small agonist is strongly enhanced at multiple
cluster sizes equipping cells with a powerful tool to tune
their calcium responses.

Stimulation by agonist is represented by a subthreshold
value of IP3 �weak stimulation� and a small periodic modu-
lation �which is subthreshold at any time�, i.e., P�t�=0.2
+0.02 sin�2�ft�, with f =0.5 Hz. The cluster encodes the pe-
riodicity of the agonist in periodicity of spikes. Power spec-
tra S�f� of the calcium trajectories are shown in Fig. 6 for
N=10, 11, 14, and 15. The high peaks are also observed at
some cluster sizes.

A convenient measure quantifying the encoding ability of
the cluster is the area of the spectral peaks around the signal
frequency above the background. The signal area A�N� as a
function of N is shown in Fig. 7�a�.

Because the widths and heights of the peaks in the power
spectrum are determined by the length of the analyzed cal-
cium trajectory, the area under the peak, which is indepen-
dent of the length of the analyzed spike train, is of more
significance. The strength of the peak in relation to the am-
plitude P1=0.02 of the stimulus, i.e., the encoding efficiency,
is characterized by the power amplification factor � �1�

� =
4

P1
2T2��

0

T

CAV�t�exp�i
2�t

T
�dt�2

, �17�

with T=1 / f and the averaged calcium trajectory in one pe-
riod

CAV�t� = lim
M→�

1

M �
m=1

M

C�t + mT�, �0  t � T� . �18�

In Fig. 7�b�, we show � as a function of the cluster size N.
Both measurements of spiking periodicity shown in Figs.

7�a� and 7�b� result in the same peaks at system sizes at
which the calcium signaling machinery encodes the small
periodicity of the stimulus best. As shown in the inset of Fig.
7 with larger range of N, one can see clearly that the back-
bone of ��N� increases for small N and then decreases for
large N, exhibiting the classic stochastic resonance effect �1�.

The superimposed peaks in Figs. 7�a� and 7�b� can be
explained both by the entropy density and the combinatorial
probability �14� as explained in the following. The spikes
occur most frequently when the stimulus P�t� approaches its
maximum of P0+ P1. The encoding efficiency � is thus
mainly determined by the spiking rate � at P= P0+ P1. As a
result, the encoding efficiency ��N� of the cluster with N
channels is related to the entropy density 	�N� at �Min�P0

FIG. 6. Power spectra of calcium spikes responding to weak
periodic IP3 stimulus P�t�=0.2+0.02 sin�2�ft�, with f =0.5 Hz at
N=10, 11, 14, and 15.

FIG. 7. Ability of the calcium signaling machinery to encode a
weak periodic signal in term of �a� signal area A�N� and �b� power
amplification factor �. Inset shows the factor � for a larger range of
system sizes N. The entropy density and the combinatorial probabil-
ity are shown on �c� and �d�, respectively, as a function of the
system size N for �Min=0.719 at P=0.22 �M.
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+ P1�. For P0+ P1=0.22 �M, for example, we find �Min

=0.719 �Fig. 1�. Inserting this value into Eq. �11�, we obtain
the corresponding entropy density shown in Fig. 7�c�. The
combinatorial probability 
 as a function of N at P
=0.22 �M with �Min=0.719 is also given for comparison in
Fig. 7�d�. For a system size of less than about N=30, the
entropy density 	�N� and the combinatorial probability 
�N�
both exhibit peaks exactly where the factor ��N� has peaks.

This discussion reveals that the peaks of encoding ability
at multiple system sizes are a consequence of entropy effects
in small system, a mechanism distinctly different from the
stochastic multiresonance �31�. Importantly, the mechanism
discussed here is not directly linked to the specific properties
of the stochastic channel system. It is merely related to the
small size of the clusters and properties of the arithmetic of
small integers.

The encoding ability of the cluster with respect to the
periodic signals also depends on the driving frequency. In
Fig. 8, we show the signal area A�N� as a function of driving
frequency f of stimulus, i.e., P�t�=0.2+0.02 sin�2�ft�, for
N=4, 6, 8, and 10. It can be seen that at both large and small
driving frequencies, the encoding ability becomes weak. The
best responding frequency is around 0.2 Hz.

VII. CONCLUSION

In this paper, we have studied a simple excitable model
for calcium release from small cluster of channels. We show
that channel noise can generate spontaneous spikes at a rate
that exhibits peaks at multiple cluster sizes. The signaling
response to a weak periodic stimulation also exhibits a simi-
lar peak structure as a function of the cluster size. Multiple
peaks at various cluster sizes for spiking rate and encoding
capability can be understood with a simple microcanonical
theory of the cluster entropy and a more accurate combina-
torial theory. Furthermore, we demonstrated by the analysis
of interspike-interval distributions and power spectra that the
periodicity of spontaneous spikes is enhanced at multiple
cluster sizes.

We have used a very simple puff model which neglects
much biological detail �such as calcium diffusion, buffers�.
The model focuses on the rhythmicity of spikes generated by
a single cluster, which then in turn may propagate through
the cell. Furthermore, we used a very simple model for the
gating of the IP3Rs. It thus remains an open problem how
robust these effects are and how relevant they may be to
intracellular calcium signaling.

Nevertheless, the emergence of multiple cluster sizes is a
robust phenomenon that is based on a threshold and a pecu-
liar algebraic feature of small numbers. It is largely indepen-
dent on system details. It has been predicted previously for
clusters of voltage-gated sodium channels for simple and
complex gating models �14�. We expect that the effects de-
scribed here using a very simple model will have applica-
tions for the design of sensors with engineered membrane
pores or biosensors �32� that exploit the enhanced sensitivity
at specific small cluster sizes.
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