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a b s t r a c t

In many cell types, intracellular calcium is released from internal stores through calcium
release channels which are distributed in clusters with a few tens of channels. Localized
calcium release events, i.e. Ca2+ puffs, are subjected to stochastic channel dynamics and
fluctuations of environmental calcium. Driven by the internal channel noise or external
calcium noise, the localized calcium puffs show a coherence resonance phenomenon
at weak stimulus. Our study indicates that coherent calcium puffs with an enhanced
periodicity can be achieved with external calcium noise more easily than with internal
channel noise.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Many important cellular functions are regulated by intra- and intercellular Ca2+ signals. Ca2+ triggers life at fertilization,
and controls the development and differentiation of cells into specialized types [1]. It mediates the subsequent activity of
cells and is invariably involved in cell death. It is shown that the information is mainly encoded in the frequency of calcium
signals. By varying the frequency of Ca2+ signals, different genes can be activated [2,3]. The oscillation frequency of calcium
signals can then direct cells along specific developmental pathways. Furthermore, it is found that the calmodulin-dependent
protein kinase II can decode the frequency of calcium oscillation into distinct levels of kinase activity [4].

Calcium ions can be released from the endoplasmic reticulum (ER), an internal store in cells with high calcium
concentration, through inositol 1,4,5-triphosphate receptors (IP3R) or Ryanodine receptors (RyR) [1]. Recent experiments
have revealed that the IP3Rs are clustered with an approximate size of hundreds of nanometers and approximately a few
tens of IP3R channels in each cluster [5,6]. The cluster distance is about 2 µm. The calcium released from a cluster of IP3Rs
or RyRs generates localized Ca2+ signaling events, i.e. puffs or sparks respectively [5,7]. The clustered channels will show
strong stochastic dynamics due to the random opening and closing of channels, resulting in stochastic puffs with a broad
range of distributions of amplitude, lifetime and inter-puff interval [8,9].

Complex intracellular Ca2+ signals in the presence of noise have been investigated experimentally and numerically
[10–16]. Consequences of the discreteness of the release clusters for Ca2+ wave formation have been explored [17,18]. It is
a recent interest to study how a periodic intracellular Ca2+ signal can be generated with a clustered channel distribution
and stochastic dynamics [17–21]. It is widely known that dynamical noise can be used to enhance or induce periodicity in
nonlinear systems through mechanisms such as stochastic resonance [22–26] or coherence resonance [26–29]. It has been
suggested that the calcium system may use stochastic resonance dynamics to improve its signal periodicity or coherence
[11,14,30]. In Ref. [30] Shuai and Jung showed that the IP3R channels in a small cluster can increase the sensitivity of the
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Fig. 1. The schematic diagram for the puff model. In the model, the external calcium noise represents the diffusing fluctuation between puff and
environmental cytosol, and the internal channel noise is due to the stochastic channel dynamics.

calcium response allowing for coherent calcium responses to weak stimuli. According to this investigation, there exists
an optimal number of IP3Rs constituting a cluster at which the periodicity or coherence of the stochastic Ca2+ signal is
maximized.

The activity of local enzymes or proteins may be modified by the localized calcium puffs which are released from
the nearby clustered IP3R channels. The cellular information can be encoded in the oscillatory frequency of calcium
concentration. Therefore, it is of interest to discuss how the clustered Ca2+ channels can generate oscillatory puffs to control
the subcellular functions. As yet there have been few detailed discussions and comparisons as to what differences could be
obtained for localized Ca2+ puffs with different sources of noise, such as external calcium fluctuation and internal channel
noise. In this paper, we compare the coherent calcium puff signals at weak stimulus, driven either by the intrinsic channel
noise or by the environmental calciumnoise.We show that, although the channel noise and the calciumnoise both can show
coherence resonance behavior, a surprising result is that coherent Ca2+ puffswith enhanced periodicity can be achievedwith
calcium noise more easily than with channel noise.

2. Li–Rinzel model

In this paper the simple two-variable Li–Rinzel model [31] is used to simulate calcium puff release from small clusters of
IP3Rs [8,30]. A schematic diagram for the model is given in Fig. 1. In order to apply the Li–Rinzel model for puff simulation,
the channels are assumed to be close enough so that Ca2+ concentration can be considered homogeneous throughout
the cluster. Thus we neglect spatial aspects of the formation and collapse of localized Ca2+ concentration in the cluster
[6,8,32–34]. The Ca2+ diffusion between cluster and environment is treated as the fluctuation of environmental Ca2+ on
puff dynamics (Fig. 1). This approximation is motivated by the fact that EGTA buffer has to be added in the cell to diffusively
decouple nearby clusters [5]. In our paperwe only consider the situationwithweak IP3 stimulation, which typically generate
localized puff releases rather than the global waves in experiment [5]. The stochastic channel dynamics are simulated by
the Langevin approach as suggested in Ref. [8,30].

According to the Li–Rinzel model [31], the IP3R channel is modeled by three identical subunits that each have three
binding sites: one site for the inositol 1,4,5-triphosphate (IP3) messenger (m-gate), one activating site (n-gate) for Ca2+ and
one inactivating site (h-gate) for Ca2+. In order for a channel to be open to conduct Ca2+, only the IP3 and the activating Ca2+
binding site need to be occupied. The entire IP3R is conducting if three subunits are conducting. In the Li–Rinzel model, the
gating variables m and n have been replaced by their quasi equilibrium values m∞ and n∞ due to their fast kinetics. If we
do not consider any noise, the calcium signaling model is given by Ref. [31].

dC
dt

= JC − JP + JL (1)

dh
dt

= α(1 − h) − βh

with

JC = c1vCm3
∞
n3

∞
h3(CER − C)

JP = vP
C2

k2 + C2

JL = vL(CER − C).

(2)

Here, C denotes the localized Ca2+ concentration released from a cluster of channels, CER the Ca2+ concentration in the ER,
and h the slow inactivation variable. JC denotes Ca2+ efflux from intracellular stores through clustered IP3R channels, JP the
ATP-dependent Ca2+ flux from the intracellular space back to the stores, and JL the leakage flux (Fig. 1).
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Fig. 2. Transient trajectory of the deterministic model in the C–h plane. Perturbation A is at p = 0.25 µM, B at p = 0.3 µM and C at p = 0.34 µM. The
arrow represents the calcium perturbation with δC = 0.1 µM.

The slow Ca2+ inactivation process depends on both the concentration of IP3 and Ca2+ via the rate constants

α = ad2
p + d1
p + d3

β = aC
(3)

in which p denotes the concentration of IP3 messenger. The quasi-equilibrium states ofm and n are

m∞ =
p

p + dm

n∞ =
C

C + dn
.

(4)

According to Ref. [31], the model parameters are c1 = 0.185, vC = 6 s−1, vL = 0.11 s−1, vP = 0.9 µM s−1, k3 =

0.1 µM, d1 = 0.13 µM, d2 = 1.049 µM, d3 = 0.9434 µM, d5 = 0.08234 µM, and a2 = 0.2 µM−1 s−1. The total amount of
Ca2+ is conserved via the Ca2+ concentration in ER with C + c1CER = c0 with c0 = 2.0 µM. The concentration p is a control
parameter.

3. Transient trajectory at subthreshold IP3 concentration

First we simply discuss some properties of the deterministic Li–Rinzel model. The bifurcation diagram of the
deterministic Li–Rinzelmodel shows an oscillation behavior at 0.354 < p < 0.642µM[31]. Fixed points can be obtained for
p < 0.354µM. Depending on the value of p, the fixed points have different properties. For example, the fixed point is a node
with two negative eigenvalues at p = 0.25 µM. At p = 0.30 µM the fixed point has two eigenvalues of −0.32± 0.39

√
−1.

Due to the large damping term of −0.32, the transient trajectory hardly shows an oscillating transient when the system
starts from any other point. However, for the fixed point at p = 0.34 µM, the two eigenvalues are −0.06 ± 0.5

√
−1 and

a spiral transient trajectory appears. This can be seen clearly in Fig. 2, in which the transient trajectories of the model are
plotted for a calcium perturbation of δC = 0.1 µM beyond its steady calcium concentration.

With a subthreshold IP3 concentration (i.e. p < 0.354 µM), the deterministic model gives a fixed point and does not
permit calcium signaling. If the system is driven bynoise at a subthreshold value of p = 0.34µM,which is near the threshold,
the system will typically show a spiral transient oscillation (Fig. 2), giving the behavior of coherence resonance. However,
in the paper we show that the coherence resonance can be also observed for a system far below the bifurcation point, even
at p = 0.30 or 0.25 µM, where the transient trajectory is largely damped (Fig. 2). We also discuss how the different sources
of noise can cause different behaviors of coherence resonance for the puff system.

4. Coherent calcium puff signals with external calcium noise

The calcium puffs are always coupled to the environmental cytosol by diffusion, which is simply treated as the external
calcium fluctuation in the model. Thus we consider the following Langevin equation

dC
dt

= JC − JP + JL + DCξ(t) (5)

where the constant parameter DC represents the noise variance of the environmental calcium fluctuation.
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Fig. 3. Stochastic trajectories of the Ca2+ signal at p = 0.30 µMwith noise strength DC = 0.01 (A), 0.05 (B) and 1.0 (C).

Fig. 4. The power spectra P of the Ca2+ signal versus frequency f of the puff model disturbed by Ca2+ noise at p = 0.3 µM with noise strength DC = 1,
0.05 and 10−5 .

Examples of stochastic calcium trajectories are given in Fig. 3 at p = 0.30 µM with DC = 0.01, 0.05 and 1. Visually,
changes in the temporal regularity of the calcium signals in Fig. 3 are not apparent for varying DC . However, there are
signatures of such a change. To characterize the degree of the temporal regularity of the calcium signals, we compute the
power spectrum.

Because we want to discuss the periodicity of the trajectory, the power spectrum calculated here is renormalized to 1.
To reduce statistical fluctuations due to the finite time-interval of recording, at each noise strength 100 power spectra are
calculated and averaged to get an averagedpower spectrum. Then the adjacent averaging process is applied to get a smoother
power spectrum. The normalized power spectra of Ca2+ signals are given in Fig. 4 at p = 0.3µMwithDC = 1, 0.05 and 10−5.
For large DC , the power spectrum does not exhibit a typical peak and thus the release of Ca2+ is dominated by stochastic
events. However, with a small noise, a peak in the power spectrum indicates an increased periodicity in the calcium signals.

The periodicity of the calcium signals can be described by the elevation of the peak 1P [30], i.e.

1P = PPeak − P(0). (6)

The periodicity index 1P as a function of DC is shown in Fig. 5(A) for p = 0.3 and 0.25 µM. The elevation of the power
spectrum goes through a maximum at DC = 0.02 for p = 0.3 µM and at DC = 0.05 for p = 0.25 µM. Thus, the overall
coherence of the Ca2+ signal exhibits a maximum at different noise strength that depends on the concentration of IP3. The
simulation results also show that a peak can be observed with a very small noise, even at DC = 10−6. This is a surprising
result, suggesting that the enhanced periodicity of calcium signals can be achieved easily even with small calcium noise.

Actually the calcium fluctuation amplitude decreases with a decrease of the noise strength. A very small noise typically
generates a very weak fluctuation of calcium around its fixed point. Thus a better parameter to characterize the noise-
induced coherent signal is to consider the combination of the oscillating amplitude and periodicity of the trajectory.
Accordingly, we define a signal index, which is given as

Γ = 1P · H (7)

with the parameterH the standard deviation of the calcium fluctuation around itsmean value. The signal index as a function
of DC is shown in Fig. 5(B). One can see that a large signal index is found at DC = 0.1 with p = 0.3 µM and at DC = 0.2 with
p = 0.25 µM. With small DC , the calcium fluctuation decreases, resulting in a small signal index.
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Fig. 5. The coherent calcium puffs driven by calcium noise. (A) The peak elevation 1P , (B) the signal index Γ , and (C) the peak frequency ωP of the power
spectrum of the calcium signal versus DC at p = 0.3 µM (squares) and p = 0.25 µM (circles).

Another parameter related to the periodicity of calcium signal is the peak frequency of spectrum. The plot of peak
frequency ωP against DC is given in Fig. 5(C). At small DC , the frequency ωP is almost fixed at 0.08 Hz for both p = 0.3
and 0.25 µM. However, with the increase of DC beyond DC = 0.005, the peak frequency decreases.

5. Coherent calcium puff signals with internal channel noise

A cluster of IP3R channels exhibits stochastic channel dynamics. For the puff simulation with the Li–Rinzel model, the
stochastic dynamics of opening and closing of channels were considered due to the stochastic binding and unbinding
dynamics of Ca2+ and IP3 on the channel [8,30]. In fact, there are various types of noise occurring in cells that can affect
the channel dynamics. For example, due to thermal fluctuation, the conformations of IP3Rs can change randomly, resulting
in the fluctuation of binding/unbinding rates for Ca2+ ions and IP3 messengers. Thus here we consider a general noise on
the channel dynamics, given as

dh
dt

= α(1 − h) − βh + Dhξ(t) (8)

where Dh is the deviation of Gaussian white noise related to stochastic channel dynamics. Thus the channel noise is a type
of internal noise for puff dynamics.

In order to discuss the periodicity of the trajectory disturbed by channel noise, the normalized power spectra of Ca2+
signals are calculated. Fig. 6 shows three spectra at p = 0.3 µM with Dh = 1, 0.01 and 10−4. For large and small Dh, the
power spectra do not exhibit a typical peak and thus the release of Ca2+ is dominated by stochastic events. However, with
suitable noise, a peak in the power spectrum indicates an increased periodicity in calcium signals.

The peak elevation of power spectrum 1P as a function of Dh is shown in Fig. 7(A) for p = 0.3 and 0.25 µM. Simulation
results indicate that the calcium noise (i.e. Eq. (5)) and channel noise (i.e. Eq. (8)) have different effects on the periodicity
of the calcium signals. With the channel noise, a large 1P can be obtained for Dh in the region from 0.002 to 0.05. Such a
noise can be caused by the stochastic channel open–closing dynamics for a cluster of several tens of IP3R channels, which
is about the cluster size observed in cells for puff release [30]. As a comparison between Figs. 7(A) and 5(A), channel noise
and calcium noise show quite different coherent behavior on Ca2+ signals.

The signal index and the peak frequency ωP as a function of Dh are shown in Fig. 7(B) and (C). One can see that a large
signal index is found at DC = 0.02 with p = 0.3 µM and at DC = 0.03 with p = 0.25 µM. With small DC , the calcium
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Fig. 6. The power spectra P of the Ca2+ signal versus frequency f of the puff model disturbed by channel noise at p = 0.3 µMwith noise strength Dh = 1,
0.01 and 10−4 .

Fig. 7. The coherent calcium puffs driven by channel noise. (A) The peak elevation 1P , (B) the signal index Γ , and (C) the peak frequency ωP of the power
spectrum of the calcium signal versus Dh at p = 0.3 µM (squares) and p = 0.25 µM (circles).

fluctuation decreases, resulting in a small signal index. The frequency ωP at the power peak is in the range from 0.03 to
0.06 Hz for both p = 0.3 and 0.25 µM. As a comparison between Figs. 5 and 7, one can see that the maximal signal index
and the peak frequency are achieved at different noise strength with channel noise or calcium noise.

6. Conclusion and discussion

In this paperwehave studied the coherence resonance of calciumpuffs released from intracellular pools through a cluster
of IP3R channels. We applied the Li–Rinzel model as an example for discussion, because it is simple and computationally
efficient. We expect that other mathematical IP3R–Ca2+ models of excitable structures would yield similar results. We
showed that different sources of noise, either an external noise or an internal noise, can generate different coherent puff
signals. A surprising result is that the calcium signals show an enhanced periodicity for a very large range of calcium noise
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strength. It means that the enhanced periodicity of calcium signals can be achieved more easily by external calcium noise
than internal channel noise.

An interesting question iswhy the calciumnoise can bemore effective than the channel noise in enhancing the periodicity
of calcium puff signals. A possible mechanismmay involve the shift of nullclines and the closeness of the Hopf instability. As
indicated in Ref. [31], the variables C and h in the Li–Rinzel model are a voltage-like fast activator and a recovery-like slow
inhibitor respectively. Thus our simulation results imply that a perturbation in the fast calcium variable can easily shift its
nullcline toward the Hopf instability, whereas a perturbation in the slow inhibitor will slowly shift its nullcline toward the
Hopf instability. However, this argument remains to be investigated in the future using detailed phase space analysis.

Although a small calcium noise can generate a periodicity-enhanced calcium signal, its fluctuation amplitude is normally
small and is hard to detect biologically. Thus, a better parameter to characterize the noise-induced coherent signal is to
consider the signal index, which is a combination of the oscillating amplitude and periodicity of the trajectory. The Li–Rinzel
model shows a similar coherence resonance with calcium noise and channel noise.

It has been suggested that the cellular information is mainly encoded in the frequency of calcium signals [1–4]. The gene
or enzyme activations are modulated by the frequency of calcium oscillations. In this paper we show that an enhanced
periodicity of calcium puff signal can be obtained with external calcium noise or internal channel noise. This result may
find interesting applications in calcium signaling for localized cellular function. We also suspect that similar behavior can
be observed in other noise-driven nonlinear systems.
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