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Abstract

The proliferation of single-cell multimodal sequencing technologies has enabled us to understand cellular heterogeneity with multiple
views, providing novel and actionable biological insights into the disease-driving mechanisms. Here, we propose a comprehensive
end-to-end single-cell multimodal analysis framework named Deep Parametric Inference (DPI). DPI transforms single-cell multimodal
data into a multimodal parameter space by inferring individual modal parameters. Analysis of cord blood mononuclear cells (CBMC)
reveals that the multimodal parameter space can characterize the heterogeneity of cells more comprehensively than individual
modalities. Furthermore, comparisons with the state-of-the-art methods on multiple datasets show that DPI has superior performance.
Additionally, DPI can reference and query cell types without batch effects. As a result, DPI can successfully analyze the progression of
COVID-19 disease in peripheral blood mononuclear cells (PBMC). Notably, we further propose a cell state vector field and analyze the
transformation pattern of bone marrow cells (BMC) states. In conclusion, DPI is a powerful single-cell multimodal analysis framework
that can provide new biological insights into biomedical researchers. The python packages, datasets and user-friendly manuals of DPI
are freely available at https://github.com/studentiz/dpi.
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Introduction
The advances in the quantitative, high-throughput measurement
of single-cell molecular composition are solving elusive biolog-
ical and medical problems [1–4]. Increasingly, single-cell multi-
modal sequencing techniques are available to further improve
our understanding of cellular function by profiling multiple dis-
tinct omics views. For example, it is now possible to simultane-
ously measure transcriptome and chromatin accessibility, spatial

location of cells in tissues, DNA methylation, and nucleosome
occupancy. These single-cell multimodal sequencing technologies
can not only reduce the differences between omics experiments,
but also reveal the heterogeneous cell functions more compre-
hensively.

Since the outbreak of COVID-19, more and more researchers
have applied single-cell multimodal techniques to analyze disease
progression [5, 6]. It is well known that disease progression
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is closely related to cell surface proteins of immune cells. In
recent years, a class of extended single-cell sequencing has been
developed to simultaneously measure the transcriptome infor-
mation and linked cell surface protein abundance [7–9]. CITE-
seq and REAP-seq are representatives of this technique, and have
similar experimental protocols [7, 8]. They utilize oligonucleotide-
conjugated antibodies to simultaneously quantify RNA and
surface protein abundance in single cells by sequencing antibody-
derived tags. As the extension of CITE-seq, ASAP-seq [10,
11], DOGMA-seq [10] and ECCITE-seq [12] enable simulta-
neous determination of chromatin accessibility and CRISPR
screening [13].

The rapid development of single-cell multimodal sequencing
experimental technologies, led by CITE-seq, poses a challenge
to the computational framework. Earlier CITE-Seq data methods
focused on the analysis of only one modality, with the other
modality being overlaid in the context. This analytical approach
is biased towards one modality and is inefficient in utilizing other
modalities.

In recent years, several methods have been proposed to com-
bine multiple modalities. They can be divided into two types:
machine learning-based and deep learning-based models. The
former include SeuratV3 (2019) [14], MOFA+ (2020) [15], BREM-SC
(2020) [16], Schema (2021) [17], SeuratV4 (2021) [18], CITEMO (2022)
[19], etc. The latter include TotalVI (2021) [20], Multigrate (2022)
[21], UMINT (2022) [22], GLUE (2022) [23], etc. The goal of both
types of models is to build a low-dimensional embedding that
represents single-cell multimodal data. Many studies have shown
that low-dimensional embeddings can be competent for a series
of downstream analyses such as cell clustering, visualization and
quasi-sequential analysis.

However, the existing models mainly focus on the features of
low-dimensional representations and ignore the biological prop-
erties of data. As a fact, the distribution is one of the most
important properties of data. For example, previous studies have
shown that RNA data measured by CITE-seq follow a negative
binomial (NB) distribution [24], while protein data follow a Pois-
son distribution [20, 24]. Differences in the distributions of RNA
and protein data also reflect differences in their biological func-
tions. Considering that the low-dimensional embedding repre-
sents the biological properties of single cells, it is also necessary
to model the distribution of low-dimensional embedding. A hard
part of modeling a distribution is to obtain the parameters of
distributions.

In this study, we design a generative model that can automat-
ically infer the parameters of a distribution, which is called deep
parameter inference (DPI). It is a single-cell multimodal integra-
tion framework that simultaneously models and integrates each
modality into a multimodal parameter space. We use the CBMC
dataset to investigate the performance of DPI and find that the
multimodal parameter space represents a more comprehensive
cellular heterogeneity than RNA and protein embeddings. Com-
parisons with the state-of-the-art methods also show that DPI
has superior and efficient performance. Then, we apply DPI to the
analysis of COVID-19 disease progression data and find that the
multimodal parameter space can ignore batch effects of samples
and serve as a reference for cell type annotation. Furthermore, the
multimodal parameter space can perform cell state vector field
analysis to reveal the effects of changes in genes and proteins on
cell states. In conclusion, DPI is a powerful single-cell multimodal
analysis framework, which not only reveals cellular heterogeneity
more comprehensively, but also facilitates biomedical disease
research.

Material and methods
Datasets and data preprocessing
Six publicly available datasets are introduced in this work,
including CBMC, COVID-19 PBMC, BMC, PBMC5k, PBMC10k
and MALT10k (Supplementary Material S1 available online at
http://bib.oxfordjournals.org/). In the DPI pipeline, the prepro-
cessed RNA and protein data are represented by Xscaled_RNA and
Xscaled_protein, respectively, (Supplementary Material S1 available
online at http://bib.oxfordjournals.org/). All datasets can be
accessed on our project website (https://github.com/studentiz/
dpi/tree/main/data), where 2D coordinates for UMAP visualiza-
tion are also included. We recommend using DPI to analyze and
visualize these datasets.

The DPI model
DPI is a comprehensive single-cell multimodal analysis frame-
work that includes a range of functions from data preprocessing
to downstream analysis. The current version of DPI is specifi-
cally designed for CITE-Seq and REAP-Seq data. Considering that
RNA and protein have different biological properties, DPI prepro-
cesses RNA and protein data separately (Figure 1A). The DPI model
has three sub-models: RNA parameter inference model, protein
parameter inference model and multimodal parameter inference
model.

The RNA data are fed into the RNA parameter inference model,
and transformed into the RNA latent space (Figure 1B). The latent
space is a normally distributed space, which is the embedding
space of cell features. DPI introduces variational autoencoder to
construct the RNA and protein latent space, respectively, based on
the inferred mean and variance.

The parameters of the RNA and protein parameter spaces are
mixed with multimodal parameter inference model to generate a
multimodal parameter space. Similar to RNA and protein latent
spaces, the multimodal parameter space is also a normally dis-
tributed space. The multimodal parameter space represents the
comprehensive cellular heterogeneity that covers the features of
the RNA and protein latent spaces.

DPI performs downstream analysis tasks such as cell cluster-
ing, visualization, reference and query of cell types, and cell state
vector fields based on cell embeddings in multimodal parameter
space (Figure 1C). The RNA and protein latent spaces are used to
reconstruct the distributions of RNA and protein data (Figure 1C).
Among them, RNA data are assumed to be NB distribution and
protein data are assumed to be Poisson distribution. Their distri-
bution parameters are also inferred by the neural network. The
assumption of data distribution needs to be modified if DPI is used
for other forms of multimodal data.

RNA parameter inference model
The RNA parameter inference model is specially designed for
RNA data features, which has two objectives: (i) to construct a
canonical data space to recapitulate RNA heterogeneity and (ii) to
infer the parameters of the RNA data distribution to reconstruct
noise-free RNA data.

To achieve objective (i), we design an asymmetric autoencoder,
given as follows:

XRNA = Input
(
Xscaled_RNA

)
(1)

Xencoded_RNA = Encoder (XRNA) (2)

μRNA = Linear
(
Xencoded_RNA

)
(3)
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Figure 1. Overview of DPI in three steps. (A) First, DPI preprocesses RNA and protein data separately. (B) Second, RNA and protein data are encoded
by RNA and protein parameter inference models, respectively, to generate RNA and protein latent spaces. A multimodal parameter space is generated
from the parametric features provided by the RNA and protein parameter inference models. (C) Third, the features of the multimodal parameter space
are used for downstream analysis of DPI. The RNA and protein latent spaces reconstruct the data distribution of RNA and protein.

σRNA = Linear
(
Xencoded_RNA

)
(4)

zRNA = μRNA + N (0, I) e
σRNA

2 (5)

X′
RNA = Linear (zRNA) (6)

Xscaled_RNA is the data source for the RNA parameter inference
model, which is renamed as XRNA (Eq. (1)). The dimensionality of
XRNA is consistent with the feature dimensionality of RNA data.
It is encoded as Xencoded_RNA by a classical encoder (a multi-layer
neural network structure with gradually decreasing dimension)
(Eq. (2)) [25–27]. By default, Xencoded_RNA consists of three-layer
neural network, with 1024, 256 and 128 neurons, respectively.
According to the principle of classical variational autoencoder
(VAE), μRNA and σRNA can be generated from Xencoded_RNA by a
simple linear transformation [28], which are the mean and vari-
ance parameters for constructing the RNA latent space, respec-
tively (Eqs (3) and (4)). By default, both μRNA and σRNA are 128-
dimensional neural network layers.

Next, a normal distribution space zRNA can be constructed
according to μRNA, σRNA and standard normal distribution N (0, I)
(Eq. (5)) [28].zRNA is the latent space of the RNA parameter infer-
ence model, which is considered to have the effective information

of XRNA. By default, zRNA is a 128-dimensional neural network
layer. The classic VAE restores zRNA to XRNA through the decoder,
which is usually symmetrical with encoder [28]. In our study, the
decoder designed here is not symmetric with the encoder, and
it is just a linear neural network layer. This simplest decoding
structure puts forward higher requirements for zRNA, which can
further ensure the effectiveness of zRNA to capture XRNA informa-
tion. The output of the decoder is denoted as X′

RNA (Eq. (6)). The
dimensionality of X′

RNA is consistent with that of XRNA.
According to the principles of VAE, X′

RNA should be as close as
possible to XRNA. However, the previous studies have shown that
XRNA data may suffer from ‘Dropout’ due to technical defects,
that is, XRNA has noise [29–31]. In this case, the proximity of
X′

RNA to XRNA can cause noise in the latent space of the RNA. To
solve this problem, we devise a scheme to make XRNA close to its
distribution. The distribution of data is noise-free. A distribution
can be generated when the parameters of the distribution are
determined. Therefore, objective (ii) is to infer the distribution
parameters of XRNA to obtain a noise-free distribution, which is
given as follows:

θRNA = Linear (zRNA) (7)

δRNA = Linear (zRNA) (8)
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NB (X; θ ; δ) = � (X + θ)

� (θ)

(
θ

θ + δ

)θ(
δ

θ + δ

)X

(9)

P (XRNA) = NB (XRNA; θRNA, δRNA) (10)

P
(
X′

RNA

) = NB
(
X′

RNA; θRNA, δRNA
)

(11)

Previous work has shown that RNA data follows an NB distribu-
tion. We infer the parameters θRNA and δRNA of the NB distribution
from zRNA using two linear neural networks, respectively (Eqs (7)
and (8)). The dimensions of θRNA and δRNA output are the same
as the dimensions of XRNA. The probability density function of
NB distribution can be generated according to θRNA and δRNA (Eq.
(9)). The probability density values of XRNA and X′

RNA in this NB
distribution are P (XRNA) and P

(
X′

RNA

)
, respectively, (Eqs (10) and

(11)).
The loss function to train the VAE model for RNA is given by

COS (A, B) = A · B
‖A‖ ‖B‖ (12)

REC_LossRNA = COS
(
XRNA, X′

RNA

) + COS
(
P (XRNA) , P

(
X′

RNA

))
(13)

KL_LossRNA =
∑ [

exp (μRNA) − (1 + σRNA) + μ2
RNA

]
(14)

RNALoss = REC_LossRNA + KL_LossRNA (15)

Cosine similarity (COS) is introduced as a measure of proximity
(Eq. (12)). The proximity of XRNA and X′

RNA is denoted as
COS

(
XRNA, X′

RNA

)
(Eq. (13)). The proximity of P (XRNA) and P

(
X′

RNA

)
is denoted as COS

(
P (XRNA) , P

(
X′

RNA

))
(Eq. (13)). The sum of

COS
(
XRNA, X′

RNA

)
and COS

(
P (XRNA) , P

(
X′

RNA

))
is used as the loss

function of reconstructed RNA data, denote as REC_LossRNA

(Eq. (13)). Besides, according to the principles of VAE, the RNA
latent space zRNA is constrained to be as close as possible to
the standard normal distribution, and its difference from the
normal distribution is defined as KL_LossRNA (Eq. (14)). The loss of
reconstructed RNA data and the loss of RNA latent space together
constitute the total loss of the RNA parameter inference model,
which is defined as RNALoss (Eq. (15)).

Protein parameter inference model
The protein parameter inference model is similar in structure
and function to the RNA parameter inference model. The protein
parameter inference model is specially designed for protein data
features, which has two objectives: (i) to construct a canonical
data space to recapitulate protein heterogeneity and (ii) to infer
the parameters of the protein data distribution to reconstruct
noise-free protein data.

To achieve objective (i), we also design an asymmetric autoen-
coder for the protein parameter inference model, which is like the
RNA parameter inference model, given by

Xprotein = Input
(
Xscaled_protein

)
(16)

Xencoded_protein = Encoder
(
Xprotein

)
(17)

μprotein = Linear
(
Xencoded_protein

)
(18)

σprotein = Linear
(
Xencoded_protein

)
(19)

zprotein = μprotein + N (0, I) e
σprotein

2 (20)

X′
protein = Linear

(
zprotein

)
(21)

We take Xscaled_protein as the input to the protein parameter
inference model, and it is renamed as Xprotein (Eq. (16)). The dimen-
sionality of Xprotein is consistent with the feature dimensionality
of protein data. It is encoded as Xencoded_protein by a classical
encoder (a multi-layer neural network structure with gradually
decreasing dimension) (Eq. (17)). By default, Xencoded_protein consists
of three-layer neural network, with 1024, 256 and 128 neurons,
respectively. According to the principle of classical VAE, μprotein

and σprotein can be generated from Xencoded_protein by a simple linear
transformation, which are the mean and variance parameters for
constructing the protein latent space, respectively (Eqs (18) and
(19)). Next, a normal distribution space zprotein can be constructed
according to μprotein, σprotein and N (0, I) (Eq. (20)). zprotein is the
latent space of the protein parameter inference model, which
is considered to have the effective information of proteins. By
default, μprotein, σprotein and zprotein are 128-dimensional neural
network layers. The output of the decoder is denoted as X′

protein

(Eq. (21)). The dimensionality of X′
protein is consistent with that of

Xprotein.
The objective (ii) is to infer the distribution parameters of

Xprotein to obtain a noise-free protein data distribution, which is
given as follows:

Poisson (X; λ) = e−λλX

X!
(22)

λprotein = Linear
(
zprotein

)
(23)

P
(
Xprotein

) = Poisson
(
Xprotein; λprotein

)
(24)

P
(
X′

protein

)
= Poisson

(
X′

protein; λprotein

)
(25)

Previous studies have shown that protein data obey Poisson
distribution (Eq. (22)) [7, 20]. We infer the parameter λprotein of
the Poisson distribution from zprotein by a linear neural network
layer transformation (Eq. (23)). The dimensionality of outputs
from λprotein is the same as the dimensionality of Xprotein. The
projections of Xprotein and X′

protein on the Poisson distribution prob-
ability density function are denoted by P(Xprotein) and P(X′

protein),
respectively (Eqs (24) and (25)).

The loss function to train the VAE model for protein is given by

REC_Lossprotein = COS
(
Xprotein, X′

protein

)

+ COS
(
P

(
Xprotein

)
, P

(
X′

protein

))
(26)

KL_Lossprotein =
∑ [

exp
(
μprotein

) − (
1 + σprotein

) + μ2
protein

]
(27)

ProteinLoss = REC_Lossprotein + KL_Lossprotein (28)

REC_Lossprotein is the loss of reconstructed protein data. It also
uses cosine similarity as the loss function. COS(Xprotein, X′

protein)

represents the difference between the input protein data and the
output data of the model. COS(P(Xprotein), P(X′

protein) indicates the
difference between input and output data in Poisson distribution
with the same parameters (Eq. (26)). According to the principles
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of VAE, the protein latent space zprotein is constrained to be as
close as possible to the standard normal distribution, and its dif-
ference from the normal distribution is defined as KL_Lossprotein

(Eq. (27)). The loss of reconstructed protein data and the loss of
protein latent space together constitute the total loss of the pro-
tein parameter inference model, which is defined as ProteinLoss

(Eq. (28)).

Multimodal parameter inference model
Multimodal parametric model also has two objectives: (i) to con-
struct a multimodal parameter space from RNA and protein
modalities, and (ii) to ensure that the multimodal parameter
space can reconstruct RNA and protein modalities.

The autoencoder for multimodal parameter inference space is
described as

μmultimodal = Encoder
([

μRNA, μprotein
])

(29)

σmultimodal = Encoder
([

σRNA, σprotein
])

(30)

zmultimodal = μmultimodal + N (0, I) e
σmultimodal

2 (31)

z′
RNA = Linear (zmultimodal) (32)

z′
protein = Linear (zmultimodal) (33)

To achieve objective (i), a trick used in the model is that we do
not directly fuse RNA and protein potential space, but instead,
we fuse their parameters. On the one hand, μRNA and μprotein are
mixed by an encoder to generate μmultimodal (Eq. (29)). Specifically,
μRNA and μprotein are concatenated and then fed to μmultimodal,
which is a 128-dimensional neural network layer. On the other
hand, σRNA and σprotein are mixed by another encoder to generate
σmultimodal (Eq. (30)). Specifically, σRNA and σprotein are concatenated
and then fed to σmultimodal, which is a 128-dimensional neural
network layer. According to the principle of VAE, μmultimodal,
σmultimodal and N (0, I) can construct a normal distribution space
zmultimodal, which is the multimodal parameter space (Eq. (31)).
By default, zmultimodal is a 128-dimensional neural network layer.
zmultimodal can decode back to the latent space of RNAs and
proteins, which are defined as z′

RNA and z′
protein, respectively

(Eqs (32) and (33)). The dimensionality of z′
RNA is the same as

that of zRNA. The dimensionality of z′
protein is the same as that

of zprotein.
Objective (ii) is to make z′

RNA and z′
protein closer to zRNA and

zprotein. Although the multimodal parameters are derived from
independent modalities, this does not guarantee that the multi-
modal parameter space covers the independent model features.
To ensure that the multimodal parameter space can reconstruct
the RNA and protein latent space, we propose objective (ii).

Thus, the loss function to train the VAE model for multimodal
data is given by

REC_Lossmultimodal = MSE
(
zRNA, z′

RNA

)+MSE
(
zprotein, z′

protein

)
(34)

KL_Lossmultimodal =
∑

[exp (μmultimodal)

− (1 + σmultimodal) + μ2
multimodal

]
(35)

MultimodalLoss = REC_Lossmultimodal + KL_Lossmultimodal (36)

DPILoss = RNALoss + ProteinLoss + MultimodalLoss (37)

The reconstruction of RNA and protein latent space is cal-
culated by mean square error (MSE), which jointly constitute
the multimodal reconstruction loss REC_Lossmultimodal (Eq. (34)).
When REC_Lossmultimodal achieves a minimum value, it can be
considered that the multimodal parameter space has successfully
reconstructed the RNA and protein latent space. According to the
principles of VAE, the multimodal parameter space zmultimodal is
constrained to be as close as possible to the standard normal
distribution, and its difference from the normal distribution is
defined as KL_Lossmultimodal (Eq. (35)). The loss of reconstructed
multimodal data and the loss of multimodal parameter space
together constitute the total loss of the multimodal parameter
inference model, which is defined as MultimodalLoss (Eq. (36)).

As a result, the total loss of the DPI model DPILoss consists
of three parts: RNALoss, ProteinLoss and MultimodalLoss. The opti-
mization goal of the DPI model is to minimize DPILoss (Eq. (37)).
When it achieves the minimum value, we believe that the DPI
model captures the cellular heterogeneity at three views of RNA,
protein and multimodal, respectively, and reconstructs the distri-
bution of RNA and protein data.

Reference and query
The multimodal parameter space generated by DPI can not only
profile the heterogeneity of cells, but also serve as a reference for
cell types.

The multimodal parameter space of samples with the known
cell subtypes can be used to annotate cell subtypes in other sam-
ples. DPI encodes each cell as an embedding in the multimodal
parameter space. The distance of the embedding in the multi-
modal parameter space can characterize the similarity of cells.
The multimodal parameter space with cell types is a reference
for locating cell types. Other unannotated cells can query the
cell types against this reference. Since the multimodal parameter
space only encodes information about the heterogeneity of cells,
it ignores batches of samples. Annotating samples using the mul-
timodal parameter space with cell types requires the following
steps:

(i) To train DPI models using annotated single-cell multimodal
data and obtain multimodal parameter spaces as well as cell
embeddings, in which the embeddings are called annotated
cell embeddings

(ii) To feed unannotated single-cell multimodal data into the
trained DPI model and obtain the cell embeddings in the
multimodal parameter space, in which the embeddings are
referred to as the unannotated cell embeddings

(iii) To calculate the cosine distance of each unannotated cell to
all annotated cells on the embedding, in which the cell type
of the unannotated cells is derived from the cell type of the
annotated cell with the maximum cosine distance.

Considering that the annotated and unannotated cell embed-
dings are located in the same multimodal parameter space, they
can be visualized in the same UMAP model. Embedding the unan-
notated cells into a UMAP model of annotated cells allows further
visualization of cell types and batches.

Cell state vector field
The cell embedding of the multimodal parameter space profiles
the cell state determined by the expression of genes and proteins.
Since the multimodal parameter space is a continuous space, it
covers the expression of all possible genes and proteins in the

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/24/1/bbad005/6987655 by Xiam

en U
niversity user on 02 M

arch 2023



6 | Hu et al.

sample. Altering the expression of genes and proteins will change
the embedding of cells in the multimodal parameter space. We
propose a cell state vector field to describe the effects of gene and
protein changes on cell states based on a multimodal parameter
space. Executing the cell state vector field from the multimodal
parameter space requires the following steps:

(i) To train a DPI model using single-cell multimodal data and
output a multimodal parameter space as well as the cell
embeddings, in which the cell embeddings are called the
original cell embeddings

(ii) To train a UMAP model using the multimodal parameter
space

(iii) To change gene/protein expression in single-cell multimodal
data. For gene/protein up-regulation, the gene/protein
expression data are expanded, by default, by a factor of
2. For down-regulation of a gene/protein, the gene/protein
expression data are scaled down by a default factor of −2.
Typically, we do not recommend to modify the expression
values of multiple genes and proteins at the same time,
which will make the experimental results difficult to
interpret

(iv) To input the modified single-cell multimodal data into the
trained DPI and output the cell embeddings, in which the cell
embeddings are referred to as the regulated cell embeddings

(v) To build the cell state vector in the multimodal parameter
space. The starting point of the vector is the original cell
embedding. The direction of the vector is from the original
cell–cell embedding to the regulated cell embedding. The
magnitude of the vector is the difference between the origi-
nal cell embedding and the regulated cell embedding

(vi) To visualize all the cell state vectors in UMAP, which con-
stitute the cell state vector field, the visualization code of
the cell state vector field refers to the UMAP function of
scVelo [32].

Results
Combining individual modalities to infer
multimodal parameter space
We take the CBMC sample as an example to demonstrate the
performance of DPI for inferring multimodal heterogeneity from
individual modalities. The CBMC samples sequenced by Stoeckius
et al., measure more than 20 000 types of genes and 10 immune-
related types in 8617 cells simultaneously [7]. CBMC is fed into the
framework of DPI. After training, we extract the embeddings of the
RNA latent space (Figure 2A), the protein latent space (Figure 2B)
and the multimodal parameter space (Figure 2C). These embed-
dings represent RNA, protein and multimodal features, respec-
tively. We find that these features are normally distributed, and
the latent space reconstructed from the multimodal parame-
ter space is also normally distributed (Supplementary Figure S1
available online at http://bib.oxfordjournals.org/). These results
imply that DPI successfully transforms RNA and protein features
into normal distributions and generates a recoverable multimodal
parameter space.

The RNA and protein latent spaces represent features of RNA
and protein modalities, respectively. The multimodal parameter
space represents the multimodal features. We perform cell
clustering and visualization with RNA, protein and multimodal
features, respectively (Supplementary Figure S2A–C available
online at http://bib.oxfordjournals.org/). To directly compare RNA,

protein and multimodal differences, we visualize the cell clusters
in all views with multimodal UMAPs (Figure 2D–F). Among them,
14 cell subtypes are identified in the RNA view, 15 cell subtypes
are discriminated in the protein view, and 18 cell subtypes are
found in the multimodal view (Figure 2D–F). While all three views
successfully capture the cellular heterogeneity of CBMC sample,
they find different cellular subtypes.

For example, CD8+ T/Mono is found in the protein view, but
not in the RNA view (Circle 1 in Figure 2D and E) [33], probably
due to the specific high expression of CD8 protein in CD8+
T/Mono (Supplementary Figure S2B and C available online at
http://bib.oxfordjournals.org/). Another example involving mouse
cells is that several mouse cells spike into the CBMC dataset to
detect the sensitivity of antibodies to the protein [7]. The RNA
view successfully identifies subtypes of these mouse cells (Circle
2 in Figure 2D and Supplementary Figure S2A and C available
online at http://bib.oxfordjournals.org/). However, the protein
view is unable to identify the subtypes of these cells due to
the lack of protein marker (Circle 2 in Figure 2E). These results
show the possible limitations of a single modal view, which
may be overcome by the multimodal views. All the cell subtypes
annotated by the RNA and protein views, including CD8+ T/Mono
and mouse cell subtypes are successfully discovered by the
multimodal view (Supplementary Figure S2C available online
at http://bib.oxfordjournals.org/). These results confirm that
a multimodal view can capture more comprehensive cellular
heterogeneity than single modality views.

Considering that the quality of RNA and protein latent spaces
directly affects the performance of multimodal parameter
space, we output the imputed RNA and protein data from
RNA and protein latent spaces. We find that the imputed
data are similar to the observed data for both RNA and
protein (Figure 2G and Supplementary Figure S2A–C available
online at http://bib.oxfordjournals.org/). This demonstrates
that the RNA and protein latent spaces successfully compress
the real multi-omics data. This guarantees the reliability
of the multimodal parameter space feature source. Further-
more, we validate the robustness of DPI in low-quality mul-
tiomics data (Supplementary Figure S3A–C available online at
http://bib.oxfordjournals.org/). On one hand, we simulate Dropout
to generate low-quality RNA data (Supplementary Figure S3B
available online at http://bib.oxfordjournals.org/) [29]. Dropout
is not random, and previous studies have shown that it
usually occurs on low-expressed RNAs [30, 31]. To simulate
Dropout more realistically, we define RNAs with expression
below the quartile as low-expressing RNAs. Considering the
different RNAs expressed inside each cell, we count the low-
expressing RNAs for each cell separately. Furthermore, each
low-expressing RNA is set to zero with 90% probability. The
RNA data of all cells are involved in the simulated Dropout.
These Dropout RNAs and normal proteins are fed to train DPI
and apply UMAP for visualization (Supplementary Figure S3B
available online at http://bib.oxfordjournals.org/). On the other
hand, we simulated contamination to produce low-quality
protein data [7] (Supplementary Figure S3C available online at
http://bib.oxfordjournals.org/). There are two types of protein
contamination. In one case, the tag of the protein binds the
protein non-specifically [7]. The other is that the tag of the protein
does not bind to the protein tightly enough [7]. These two types
of contamination are almost random. To simulate protein con-
tamination, all protein data are randomly increased/decreased
in abundance by 0–20%. Contaminated protein and normal
RNA data are fed into DPI to train the model and visualized
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Figure 2. Application of DPI to analyze CBMC sample. DPI maps CBMC data into (A) RNA latent space, (B) protein latent space and (C) multimodal
parameter space. (D) The RNA and (E) the protein latent spaces reveal the cellular heterogeneity from its own view. (F) The multimodal parameter space
reveals the integrated cellular heterogeneity. (G) Violin plots of the observed and the imputed multimodal data.

using UMAP (Supplementary Figure S3C available online at
http://bib.oxfordjournals.org/). We find that both the low-quality
RNA data and the low-quality protein data are similar to the con-
ventional data integration results (Supplementary Figure S3A–C
available online at http://bib.oxfordjournals.org/). This means
that DPI has a degree of robustness in integrating low-quality
data. In summary, DPI characterizes cellular heterogeneity by
inferring a reliable multimodal parameter space from each
reliable single modality.

Comparison and evaluation with state-of-the-art
models
We compare the performance of DPI with two types of state-of-
the-art methods, namely the machine learning-based methods
and neural network-based methods. We choose SeuratV4 as a

representative of machine learning methods, which is one of the
state-of-the-art methods for integrating CITE-seq data. SeuratV4
proposes a weighted nearest neighbor analysis to learn the infor-
mation content of each modality in each cell and defines cell
subtypes basing on a weighted combination of two modalities. We
apply the default configuration of SeuratV4; i.e. RNA and protein
data are reduced to 30 and 18 dimensions by PCA, respectively.
These dimensions are used by SeuratV4 to find multimodal neigh-
bors. The representative of neural network integration methods
is TotalVI, which integrates multimodal data using variational
inference and autoencoders. We apply the default configuration
of TotalVI, where the ‘latent_distribution’ parameter is set to
‘normal’. SeruratV4, TotalVI and DPI follow the same pipeline to
ensure a fair comparison (Figure 3A).

Typically, the previous annotations of cellular data are derived
from RNA data. Considering that multimodal data can identify
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Figure 3. Comparison of DPI with state-of-the-art models. (A) We design a process to fairly evaluate the performance of DPI and state-of-the-art methods.
To objectively evaluate the performance of these models, we introduce three unsupervised evaluation metrics: CHS (B), SS (C) and DBI (D). In addition,
we test the performance of models in GPU and CPU environments (E).

more cell subtypes, cell annotations of RNA views are not
appropriate to assess the clustering performance of multimodal
views. Three unlabeled clustering metrics, Calinski Harabasz
score (CHS) [34], Silhouette score (SS) [35] and Davies Bouldin
Index (DBI) [36], are introduced to evaluate the performance of
these three models (Supplementary Material S2 available online
at http://bib.oxfordjournals.org/).

CHS evaluates the between-cluster variance and within-cluster
variance of multimodal data to calculate scores. A higher CHS
means a better performance. The results show that DPI outper-
forms SeuratV4 and TotalVI under the CHS metric (Figure 3B). This
shows that DPI is a good description of the differences between
cell clusters and the homogeneity within cell clusters.

SS is another commonly used unsupervised clustering evalua-
tion metric. It ranges from −1 to 1, in which −1 means the worst
clustering and 1 means the perfect clustering. SS around zero
indicates the overlapping clusters. The performance of DPI under
the SS indicator is also better than those of SeuratV4 and TotalVI
(Figure 3C). This implies that DPI-generated cell clusters are dense
and well separated.

Furthermore, we introduce DBI to evaluate the performance
of unsupervised cell clustering. DBI stands for the average
‘similarity’ between clusters, where similarity is a measure of
how close the clusters are to the size of the clusters themselves.
Note that zero is the lowest possible score for DBI, the values
closer to zero indicates a better partitioning. DPI and SeuratV4
achieve lower DBI compared with TotalVI, indicating that DPI and

SeuratV4 can better profile the relationship between cell clusters
than TotalVI (Figure 3D).

These results show that DPI has superior performance
compared with the above-mentioned methods. Besides, DPI
enables efficient analysis of large-scale single-cell multimodal
data (Figure 3E). It is worth noting that DPI also supports
GPU acceleration, in this mode DPI has higher efficiency. In
summary, DPI is a powerful single-cell multimodal analysis
framework that can accurately and efficiently analyze single-cell
multimodal data.

Reference and query cell subtypes based on the
multimodal parameter space
DPI can not only characterize cell heterogeneity, but also anno-
tate cell types regardless of batch effects. Batch effects are a
major challenge for single-cell sequencing analysis. In this case,
more than 600 000 PBMC with COVID-19 are introduced. COVID-
19 PBMC samples are classified as healthy, asymptomatic, mild,
moderate, severe and critical ones. To exclude the effect of sample
size, we randomly sample 2000 cells from each disease progres-
sion. There are total 12 000 PBMC with six disease progressions.
These cells are fed into DPI for clustering (Figure 4A). We find
batch effects for these samples (Figure 4B). To illustrate the ability
of DPI to eliminate batch effects and annotate cell types, we
conduct the analysis on the full COVID-19 dataset (not the sam-
pled dataset).
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Figure 4. Application of DPI to reference and query PBMC for COVID-19 disease progression. (A) Multiple COVID-19 disease progression PBMC samples
are clustered and (B) visualized by batch. (C) We evaluate the clustering results from three views of RNA, protein and multimodality in healthy PBMC,
respectively. (D) Visualization of the progression of COVID-19 disease with healthy PBMC as a reference. (E) The proportion of PBMC subtypes during
COVID-19 disease progression. Changes in CCR7 (F), IL7R (G), CD27 (H) and PD-1 (I) expression levels of CD4+ T cells in PBMC with the progression of
COVID-19 disease.

DPI annotates cell types based on reference and query strate-
gies. Healthy PBMC are used as the reference to annotate mild,
asymptomatic, severe and critically COVID-19 PBMC. Based on
the previous studies, we annotate healthy PBMC in RNA, pro-
tein, and multimodal views as detailed as possible (Supplemen-
tary Figure S4A–C available online at http://bib.oxfordjournals.
org/).

The adjusted Rand Index (ARI) [37], Normalized Mutual
Information (NMI) [38] and Adjusted Mutual Information (AMI)
[38] are introduced to evaluate the performance of these
three views (Supplementary Material S3 available online at
http://bib.oxfordjournals.org/). We find that the multimodal view
performs best (Figure 4C).

We further merge cellular subtypes of the healthy PBMC
(Supplementary Figure S4D available online at http://bib.
oxfordjournals.org/). We separately query and visualize the
PBMC subtypes of these COVID-19 patients, using the healthy
PBMC multimodal parameter space as a reference (Figure 5D
and Supplementary Figure S5B–F available online at http://bib.
oxfordjournals.org/). By UMAP visualization, we find that the
coordinates of cells with the same cell subtype are very close
(Figure 4D). For example, CD4+ T cells in all patient states
are located in the middle of the UMAP visualization (Circle in
Figure 4D). The UMAP visualization reflects the location of the
data in the embedding space.

Although the healthy and COVID-19 PBMC have the same
cell composition, the proportions of their cellular subtypes are
different (Figure 4E). It can be found that with the progression
of COVID-19 disease, the proportion of CD4+ T cells gradually
decreases (Figure 4E). It is well known that T cells are essential
lymphoid immune cells. Numerous studies have shown that T
cells play many key roles in fighting against COVID-19 [39–42].
Studying the reduction in the proportion of CD4+ T cells can
help reveal the progression of COVID-19 disease. As a fact, the
proportion of cells is directly related to the function of the cell,
which is determined by the expression of genes and proteins. We
find that the expression level of IL7R protein increases in CD4+
T cells as the COVID-19 disease progresses (Figure 4F). IL7R is
associated with the growth and proliferation of lymphocytes. An
increase in IL7R implies a rapid CD4+ T growth [43].

We also find a decrease in CCR7 protein (Figure 4G) and an
increase in CD27 protein (Figure 4H) in CD4+ T cells as the disease
progresses. It is known that naïve CD4+ T cells express higher
levels of CCR7, and the previous studies have shown that CD27
is increased upon T cell activation. The decreased CCR7 and
increased CD27 suggest that CD4+ T cells are rapidly activated
as the disease progresses [44–47]. In addition, we notice that the
expression level of PD1 protein increases as the disease progresses
(Figure 4I). PD1 is a marker of T cell exhaustion [48]. With the
development of COVID-19, T cells are rapidly exhausted [49].
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Figure 5. Predicting the effect of gene and protein regulation on BMC cell state. (A) BMC samples are annotated with 17 cell subtypes. Violin plot
visualization of IL7R gene (B), CD45RO protein (C), TNFRSF4 gene (D) and CD27 protein (E) expression. The cell state changes are induced by IL7R gene
down-regulation (F), CD45RO protein down-regulation (G), TNFRSF4 gene up-regulation (H) and CD27 protein up-regulation (I).

These results suggest that CD4+ T cells rapidly grow and
become activated after infection with COVID-19. However,
these activated CD4+ T cells are rapidly exhausted. Rapid
depletion of CD4+ T cells is manifested by a decrease in the
proportion of CD4+ T cells. A similar pattern is also found
in CD8+ T cells (Supplementary Figure S6 available online at
http://bib.oxfordjournals.org/). Previous studies have also shown
that as COVID-19 disease progresses, T lymphocytes are activated
and exhausted [48, 49]. The above results demonstrate that
DPI can help researchers to analyze disease progression across
multiple samples in an intuitive manner. In addition, DPI not only
automates the annotation of cell subtypes, but also preserves the
biological properties of the sample. These results are attributed to
the fact that the multimodal parameter space constructed with
the reference dataset is batch-independent.

Cell state vector fields based on multimodal
parameter space
The multimodal parameter space generated by DPI can also be
used to predict the effects of changes in genes and proteins
on cell states. It can be profiled on ‘cell state vector fields’. In

this case, we introduce BMC samples to illustrate the function
of the cell state vector field. The BMC samples include 30 672
human bone marrow cells that are simultaneously measured for
transcriptome and 25 types of proteins. We find 17 cell subtypes
in the BMC (Figure 5A and Supplementary Figure S7 available
online at http://bib.oxfordjournals.org/). We provide examples of
the IL7R gene (Figure 4B), CD45RO protein (Figure 4C), TNFRSF4
gene (Figure 4D) and CD27 protein (Figure 4E) to illustrate the
biomedical function of cell state vector field.

We simulate IL7R gene down-regulation with the cell state
vector field of DPI (Figure 4F). As seen from the variations in
the multimodal parameter space (Figure 5F), CD4+ T cells are
affected by the down-regulation of the IL7R gene (Circle 1 in
Figure 5F). It is found by the cell state vector field that CD4+
Memory T cells point to CD4+ Naïve T cells (Circle 2 in Figure 5F).
This represents a shift in the state of CD4+ Memory T cells to
that of CD4+ Naïve T cells. The CD4+ Naïve T cells are resting
immune cells, which do not have the immune function of CD4+
Memory T cells. This means that the down-regulation of the IL7R
gene results in the conversion of CD4+ T cells to a state similar to
that of CD4+ Naïve T cells.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/24/1/bbad005/6987655 by Xiam

en U
niversity user on 02 M

arch 2023

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad005#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad005#supplementary-data


Modeling and analyzing single-cell multimodal data | 11

Previous studies have shown that the deletion of the IL7R
gene leads to severe combined immunodeficiency (SCID) [50–52].
SCID is a fatal immune disease. Since the immune cells lack
immunological function, the immune system of SCID patients has
little effect on defending against bacteria, viruses and fungi [53].
Our modelling result successfully predicts the transformation of
CD4+ T cells to a state without immunological function owing to
IL7R down-regulation.

In addition, we simulate the changes in immune cells after
IL7R up-regulation (Supplementary Figure S8A available online at
http://bib.oxfordjournals.org/). We find that CD4+ naïve T cells
transform into a state like CD4+ memory cells. It is known that
IL7R up-regulation implies lymphocyte activation [54]. Our model
successfully predicts the activation of CD4+ naïve T cells to CD4+
memory T cells due to IL7R up-regulation.

Furthermore, DPI can simulate the effect of protein changes
on the cell state. Similar to the deletion of the IL7R gene,
the deletion of CD45 family proteins also causes SCID [55].
We simulate the down-regulation of CD45RO protein (Cir-
cles 1 and 2 in Figure 5G) and find similar results to IL7R
gene down-regulation. We also simulate the up-regulation of
CD45RO protein (Supplementary Figure S8B available online at
http://bib.oxfordjournals.org/), which also shows similar results
as the up-regulation of the IL7R gene. These results suggest that
both gene and protein regulation can be accurately predicted
by DPI.

Another case is immunodeficiency disease (IDD), a group of
diseases caused by a deficiency in immune function due to
an underdeveloped or compromised immune system. Previous
studies have shown that the deletion of TNFRSF4 expression
causes IDD. We simulate the change in cell state after the down-
regulation of the TNFRSF4 gene (Circle 1 in Figure 5H). As shown
in Figure 5H, the arrows of the CD4+ Memory T cell state diverge
outward (Circle 2 in Figure 5H), which implies that CD4+ Memory
T cells cannot be maintained. Previous studies have shown that,
when TNFRSF4 gene expression is down-regulated, Naïve T cells
have difficulty activating into Memory T cells [56–58]. Our model
successfully predicates the state change of CD4+ T memory cells.
On the contrary, the up-regulation of TNFRSF4 shows a trend
opposite to that in Figure 5H (Circle 2 in Figure 5H), that is, CD4+ T
memory cells could develop normally (Supplementary Figure S8C
available online at http://bib.oxfordjournals.org/) [58].

The above results have demonstrated the biomedical analysis
capabilities of the cell state vector field. In fact, the utility of the
cell state vector field arises from the expression of genes and
proteins. Here, we use the CD27 protein as an example to explain
the functional origin of the cell state vector field. It is well known
that CD27 is a member of the TNF receptor superfamily and is
constitutively expressed on Naïve T cells, Memory B cells, NK
cells and HSC (Figure 4E) [59]. CD27 is a transmembrane phosphor
glycoprotein expresses on CD4+ and CD8+ T cells. CD27 expres-
sion increases upon T cell activation and is shed from the cell
surface to form the soluble CD27 upon activation. Therefore, the
expression level of CD27 in CD8+ Naïve T cells is higher than that
in CD8+ Effector T cells (Figure 5E and Supplementary Figure S9A
available online at http://bib.oxfordjournals.org/).

We model the up-regulation of CD27 protein for each cell.
Since each cell in the cell state vector field is localized according
to gene and protein expression, the vector of CD8+ Effector T
cells is oriented in the same direction as CD8+ Naïve T cells
with higher CD27 expression (circle 2 in Figure 5I). Conversely,
the down-regulation of CD27 protein in each cell will lead to
the cell state vector pointing from CD8+ Naïve T cells to CD8+

Effector T cells (Supplementary Figure S9B available online at
http://bib.oxfordjournals.org/).

These results show that the cell state vector field profiles
the changes in cell state according to the expression of genes
and proteins. The ability of the cell state vector field to profile
the cell state changes stems from the continuity of the multi-
modal parameter space. Limited by experimental conditions, it is
unlikely that one sample will cover the possible expression of all
genes and proteins. In short, the cellular state represented by the
sample is discrete. The multimodal parameter space generated
by DPI is continuous, covering all possible values of genes and
proteins in a sample with a specific distribution. Therefore, the
cell state vector field based on the multimodal parameter space
can characterize the change of cell state. In conclusion, the cell
state vector fields provide novel and actionable biological insights
into the mechanistic drivers behind disease.

Discussion
In this paper, we propose a novel unsupervised generative model
named DPI to analyze single-cell multimodal data. The functions
of DPI include multimodal integration, cell clustering and visual-
ization, batch-free reference and automatic cell type annotation,
cell state vector field analysis, etc. These capabilities allow DPI
to systematically analyze single-cell multimodal data from phys-
iological and disease states. The success of DPI is attributed to
innovative parameter inference methods and multimodal param-
eter spaces. The results of the CBMC analysis show that the
multimodal parameter space inferred from the parameters of
the RNA and protein latent spaces can better characterize the
heterogeneity of cells.

Besides, the distribution of RNA and proteins restored by
parameter inference is consistent with the distribution of the
original data. It is worth noting that DPI can not only integrate
biological data, but also be applied to the integration of other
types of multimodal data. DPI can inspire other deep learning
research and has a wide range of applications. Comparisons with
the state-of-the-art methods illustrate the superior performance
of the parameter inference method.

As deep learning model, TotalVI is a great single-cell multi-
omics integration model. Both TotalVI and DPI transform multi-
modal embedding into a standard normal distribution. However,
they have different modeling ideas. TotalVI, including SeuratV4,
can be simplified to extract features for each modality and then
integrate these features. While DPI does not directly integrate
the data of each mode, but rather the parameters of each modal
distribution. Parameters are not equivalent to features. Param-
eters describe the data as a whole, while features focus on the
individuals in the data. The parameter fusion strategy enables
the model to learn data from the whole. Since the distribution
of latent layers is predetermined, the difficulty of the model
to learn parameters is lower than that of extracting features.
Furthermore, RNA, protein and multimodal spaces are designed
to have standard normal distributions, avoiding model bias to
either side. These modeling ideas enable DPI to model single-cell
multimodal data fast and accurately.

The application of COVID-19 indicates that the multimodal
parameter space is robust and can serve as a reference for cell
types. A multimodal parameter space consisting of annotated
samples is a ‘map’ that can be used to query cell types. Similar
cell types are approached in the multimodal parameter space.

The multimodal parameter space is a continuous generative
space that covers all possible cell states in the sample. Single-cell
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multimodal data are transformed into a multimodal parameter
space by DPI, which is equivalent to setting ‘coordinates’ for each
possible cell state. Analysis of the BMC dataset reveals that the
changes in RNA and protein signatures lead to the changes in
the ‘coordinates’ of cells in a multimodal parameter space. We
present a cell state vector field to visualize this change. The cell
state vector field relies on continuous cell states generated from
a multimodal parameter space. However, the current version of
the cell state vector field cannot account for the changes in cell
signaling networks. We plan to introduce kinetic methods [60–62]
in future release to model cell signaling networks as a function of
sampling time.

In conclusion, DPI is a powerful single-cell multimodal analysis
framework that not only integrates and analyzes multimodal
data, but also reveals new biological insights into biomedical
researchers.

Key Points

• Our integrated multimodal data are not only immune to
noise but also aligned with each cell modality.

• We present an efficient framework, which also achieves
better clustering performance.

• Our approach can refer and query cell types without
batch effects, which is successfully applied to reveal
the progression of the COVID-19 disease across multiple
samples.

• Our proposed cell state vector fields can visualize the
effects of genes and proteins on cell state transitions
and reveal the mechanism of disease occurrence and
development.

• The present multimodal integration method, fusing the
parameters of the data rather than the data itself, may
inspire other multimodal integration tasks.

Supplementary Data
Supplementary data are available at Briefings in Bioinformatics
Online.
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