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A B S T R A C T 

The imaging quality of a telescope directly affects the reliability of astronomical research. Through the monitoring and diagnosis 
of imaging quality, the cause of the deterioration of imaging quality can be found in time, which is essential for ensuring 

the peaking performance of the telescope and high-quality imaging. Moreo v er, these operations are complex and crucial for 
achieving high-quality imaging of future giant telescope systems involving active optics, adaptive optics, and other advanced 

techniques. We propose a three-component method based on cutting-edge artificial intelligence technology to real-time monitor 
and efficiently diagnose the telescope image quality. The first component, an image quality monitoring system, monitors and 

outputs the telescope’s image quality. The second component is a query system with a knowledge graph, which outputs the node 
chains as the possible cause of poor image quality based on the input. The third component, a final estimator, uses the node 
parameter, which contains historical fault data and real-time updated data from sensors, to give the probability of each node 
chain. We construct and test the system in the Large Sky Area Multi-Object Fiber Spectroscopy Telescope. 

Key words: methods: data analysis – methods: numerical – techniques: image processing – software: data analysis. 
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 I N T RO D U C T I O N  

maging data is one of the essential products of the telescope 
nd provides valuable scientific research information. The imaging 
uality directly affects the reliability of the research results. Many 
bservatories spend considerable time and money to enhance and 
ptimize the imaging quality of their telescopes, for example, 
y enlarging the aperture of telescopes, operating adaptive optics 
echniques, launching the telescope into space, and installing higher 
esolution cameras. 

Ho we ver, the telescope may be unable to image at optimal quality
ecause of atmospheric parameters, improper operation, and device 
ault. Several methods have been proposed to maintain the peaking 
erformance of the telescope and ensure high-quality imaging. The 
loan Digital Sky Survey telescope (McGehee et al. 2002 ; Gunn et al.
006 ) and the Very Large Telescope (Shanks et al. 2015 ) mount many
ensors to monitor telescope devices and atmospheric parameters, 
hich will warn the maintainers when engineering parameters 

pproach the threshold values. Using a large amount of logbook 
ata, the LIGO observatory constructs an information retrie v al and 
ecommendation system (Abbott et al. 2009 ; Mukund et al. 2018 )
ased on the natural language process technology to speed-up the 
isco v ery of historical fault information. The Australian Radio 
elescope (Landau 1994 ) and Hubble Space Telescope (Burrows 
t al. 1991 ; Gerb 1991 ) build fault tree-based expert systems for fault
iagnosis to impro v e maintenance efficiency. 
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The causes of poor imaging quality are complicated, as advanced 
echnologies and devices are applied to future giant telescopes, such 
s acti ve, adapti ve optics technology, and interferometer. The current
ethod keeps high-quality imaging by efficient fault diagnosis and 

ritical parameter monitoring. These methods need the maintainer to 
et the thresh value and transfer fault performance to the phrase
sed for the query, which relies on the maintainer’s experience. 
rtificial intelligence technology is widely used for data analysis 

nd decision support (G ́omez et al. 2019 ; Longo, Mer ́enyi & Ti ̌no
019 ) to simplify manual operations and impro v e the efficiency
f operations. Proposing an intelligent monitoring and diagnosis 
ethod for the telescope image quality is necessary. 
Teimoorinia et al. ( 2020 ) use combined machine-learning models 

o classify the image quality; Hu et al. ( 2021 ) achieve telescope image
uality monitoring and classification and give the possible cause 
f poor image quality. This paper aims to provide an interpretable
iagnosis method of image quality with high-efficiency according 
o the classification results of the image quality. The telescope is a
ystem composed of many complex units, among which telescope 
evices, site environment, and human factors affect the image quality. 
he most challenging task in image quality diagnosis is finding 

he cause according to the limited information. Knowledge graphs 
KGs) have shown exemplary performance in expressing the complex 
elationship and reasoning the result by limited information (Chen, 
ia & Xiang 2020 ; Hogan et al. 2021 ). F or e xample, KGs hav e
een used in improving search capabilities (Zou 2020 ), providing 
ser recommendations (Guo et al. 2022 ; Xie et al. 2021 ), facilitating
esearch and disco v ery (Xu et al. 2020 ), and assessing and mitigating
isk (Tissot & Pedebos 2021 ). 

http://orcid.org/0000-0002-3641-8463
http://orcid.org/0000-0003-2179-3698
mailto:tzhu@niaot.ac.cn


3542 T. Hu et al. 

M

Figure 1. The focal surface of LAMOST and the positions of the acquisition 
cameras. The left image shows the focal surface, which is mounted with eight 
2048 × 2048 pixels cameras; the right image shows the relative positions 
of eight cameras, four inner cameras in the 3-degree FOV in green and four 
outer cameras in the 5.2-degree FOV in blue. 
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Figure 2. Three types of relationship of different entities. 

Figure 3. Classes of telescope entities. 
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We propose a three-component telescope image quality monitor-
ng and diagnosis system (IQMDS) to meet future giant telescopes’
igh-image quality needs. The first component, an image quality
onitoring system (IQMS), monitors the telescope image quality

nd transfers the star image to a core phrase of image quality.
he second component, a query system based on the KG, can find
ut the possible cause of poor image quality in the form of node
hains. The third component is a final estimator, which combines
istorical data and real-time high-frequency data from sensors to
ive the probability of each node chain. This method uses artificial
ntelligence technology to replace manual monitoring and diagnosis
f telescope image quality, helping to increase data output and keep
mage quality. 

This paper provides an approach accessible for most telescopes,
lthough it uses the Large Sky Area Multi-Object Fabre Spectro-
copic Telescope (LAMOST) (Cui et al. 2012 ; Zhao et al. 2012 ) as
n example for illustration. Eight acquisition cameras are mounted
cross the LAMOST focal surface, shown in Fig. 1 . We use the star
mage captured by the acquisition camera as the system’s input for

onitoring and diagnosing image quality. 
The paper is organized as follows. Section 2 briefly introduces

he KG technology and the telescope image quality KG. We present
he detail of the telescope image quality monitoring and diagnosis in
ection 3 . A telescope IQMDS based on LAMOST is introduced and
nalysed in Section 4 . Finally, we give the conclusion in Section 5 . 

 K N OW L E D G E  G R A P H S  

inghal ( 2012 ) first proposed the KG used in the searching machine
n 2012. KGs describe the relationship between different entities,
hich contains much prior knowledge. KGs can mine, organize, and

f fecti vely manage knowledge from large-scale data to improve the
nformation process’s quality and efficiency and provide users with

ore intelligent services. This part introduces the KGs representa-
ion method, related entities of telescope image quality, and their
elationship. 

.1 NEO4J 

here are two types of KG data models: resource description
ramework (RDF) (Manola et al. 2004 ) graphs and attribute graphs.
DF is a standard directed data model for presenting information on

he web. RDF is a triple fact (Subject–Predicate–Object). The core
tructure of attribute graphs is a set of triple (head entity, relationship,
NRAS 525, 3541–3550 (2023) 
nd tail entity), and every entity can add the attribute. Entities are
onnected through connections to form a net-like structure. NEO4J

s an attribute graph data base focusing on data structures, data
odel features, and query facilities. Because adding and refreshing

ode properties are necessary for telescope maintenance KGs, our
stablished KG and query system are based on NEO4J . 

.2 Concept layer of knowledge graph 

op-down or bottom-up methods could be used to construct a KG.
he top-down approach has two steps: firstly, the concept layer needs

o be built by the expert, and then the instance extracted from an
mount of operational data is added to the KG. This paper builds the
oncept layer of KG based on the expert experiment and maintenance
ogbook. To help the understanding of the graph, we arranged some
rrow rules shown in Fig. 2 . 

The telescope image quality KG needs to contain the telescope
mage quality and all the entities that may affect the image quality.
ntities can be classified into four classes, i.e. image quality, tele-
cope device, telescope staff, and site environment in the telescope
mage quality domain. The classes of telescope entities are shown in
ig. 3 . 
The different classes have different properties, which can help

ptimize the image quality and estimate the cause of the fault. The
our classes of entities are defined below. 

Definition 1: Telescope device 
A telescope device entity has three properties, represented by a

riple td = < s , l , n > , where s is a list of special properties of the
elescope device which can be detected by the sensor, for example,
he force value of a force actuator or the thickness of an oil pad.
he l and n represent the label (the device category) and the device’s
ame, respectively. 

Definition 2: Telescope image quality 
A telescope image quality entity has one property n , which is the

ame of telescope image quality. 
Definition 3: Staff 
A staff entity has two properties and is represented by a couple

t = < n , o > , where n is the role name of the staff, and o is an
peration of the staff role. 
Definition 4: Environment 
An environment entity has two properties and is represented by a

ouple e = < s , n > , where s is a list of the special properties of the
nvironment, for example, wind speed and temperature value; n is
he name of the environment. 
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Figure 4. The telescope device contains the optics system, dome and support 
building, structure, control system, and terminal instrument. 
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Some triples (head entity, relationship, and tail entity) connect 
ach other to construct an event; s and o are essential for e v aluating
hether the event is established. 
The telescope device is pivotal for monitoring and diagnosing 

maging quality. Any fault in the telescope device can directly impact 
he imaging quality, and skilled operators can enhance the image 
uality through adept operation of the equipment. Fig. 4 gives the 
elescope device classification base on the classification criteria of 
he report of KECK (Nelson, Mast & Faber 1985 ), SALT (Stobie,

eiring & Buckley 2000 ), E-ELT (Tamai & Spyromilio 2014 ), 
nd LAMOST (Cui et al. 2012 ). Telescope devices are classified 
nto optics systems, dome and support buildings, structures, control 
ystems, and terminal instruments, and every sub-class contains 
any entities. 

.3 The relationship of different class 

he telescope monitoring and diagnosis KG describes the relation- 
hips between different entities, which include those connecting 
mage quality with the telescope device, image quality with the site
nvironment, and telescope device with person factor. The telescope 
evice and site environment affect the image quality directly, while 
elescope staf f af fects the telescope image quality by affecting the
elescope device or doom environment. We introduce these below, 
espectively. 

We take LAMOST as an example to introduce the relationship 
etween these four classes of entities. Because of the inevitable 
nfluence on LAMOST from atmospheric turbulence and long-time 
xposure imaging, each acquisition camera obtains circular star 
mages with Gaussian image intensity profiles. The telescope’s image 
uality deteriorates, and its state manifests as the image spot size 
ecomes larger and the image spot shape deviates from the circle. 
We analysed these relationships using the maintenance logbook, 

aily observation status reports, expert experiments, and optics 
oftware simulation. The maintenance logbook records the telescope 
aults, the description of the faults and the fault reasons; The 
aily observation status report records the device sensor parameters, 
tmospheric seeing, weather, wind speed, and temperature. 

.3.1 Relationship between ima g e quality and telescope device 

he relationship between the telescope device and image quality is 
hown in Fig. 5 . The telescope device contains the optics system,
ome and support building, structure, control system, and terminal 
nstrument. Image quality is present by star image shape and size. 

The terminal instrument will generate a pure black picture if 
he dome is not opened. The telescope sub-mirror tilt will cause 
 tw o-point-lik e star image; poor performance of active optics will
ause a lump y-lik e star image; telescope structure shaking and poor
erformance of tracking-pointing control system will lead to a stick- 
ike star image; and telescope focal surface defocusing will lead to
 donut-like star image. Focal surface defocuses and active optics 
rrors will make the star image larger, while tilt or defocus of the
erminal instrument will lead to a donut-like star image. 

.3.2 Relationship between ima g e quality and site environment 

he site environment influences the telescope image quality, and 
stronomers al w ays spend much time on site selection. According to
he site selection research report and weather station data (Aksaker 
t al. 2020 ; Deng et al. 2021 ), we divided the site environment
arameters into ele v ation, climatic condition, atmospheric seeing, 
uminosity of night sky, atmospheric extinction, and atmospheric 
cattering. 

All site environment parameters affect the telescope image quality. 
he bright night sky will cause dim stars in the picture. Climate
ondition mainly contains temperature T , pressure P , and humidity
H . These parameters affect the atmospheric index n and satisfy the

ollowing: 

 = 1 + 7 . 86 × 10 −4 P 

273 + T 
− 1 . 5 × 10 −11 RH 

(
T 2 + 160 

)
. (1) 

The uneven distribution of the refractive index on the optical 
ath can lead to poor seeing. Therefore, rapid changes in these
limate parameters can cause poor seeing, resulting in large size star
mages. Strong wind speed can also rapidly change the temperature 
nd pressure and even cause telescope structure shaking, leading 
o a stick-like star image. It must be mentioned that ventilation and
efrigeration systems can adjust the temperature to impro v e the image
uality. The detail is shown in Fig. 6 . 

.3.3 Relationship between staff and other entities 

elescope operation and maintenance need a lot of staff, includ- 
ng astronomers, maintainers, and operators. Astronomers set the 
bservation strategy of the telescope and guide the operator and 
aintainer; operators are responsible for the control system, dome 

nd support building on–off; and maintainers maintain the telescope 
efore and after operating the telescope. 
If operators do not adhere to the standard operating procedures 

uring device usage, it can lead to irregularities or even device
alfunctions. The lack of proper operation of the refrigeration and 

entilation systems before observation prevented the reduction of 
he temperature difference between the dome’s interior and exterior, 
esulting in poor dome seeing and consequently leading to a larger
tar image. Failing to select the appropriate reference star hindered 
he active optics system’s capacity to accurately calibrate the mirror 
urface, consequently producing a lumpy-like star image. Further 
etails are illustrated in Fig. 7 . 
And the site environment also affects the telescope staff’s work; for 

xample, high ele v ation leads to the lack of oxygen, which increases
he work difficulty of the maintainers and operators. 

 TELESCOPE  I MAG E  QUALI TY  M O N I TO R I N G  

N D  DI AG NOSI S  SYSTEM  

elescope IQMDS contains an IQMS, a KG result generation system 

KRGS) and a final estimator. The shape classification based on 
MNRAS 525, 3541–3550 (2023) 
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Figure 5. Relationships between telescope devices and image quality. 

Figure 6. Relationship between image quality and site environment. 
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achine learning and the corresponding relationship of star shape
ith image quality is the core of the IQMDS. The KG is the core of

he KRGS system based on the rich e xpert e xperience. In this part,
e take LAMOST as an example to introduce our method. 

.1 Image Quality Monitoring System 

 well-experienced maintainer can quickly determine the cause of
he poor image quality based on the star image. Because there is a
elationship between the star image shape and image quality, we can
se the star image shape and size to represent the telescope image
uality. 
NRAS 525, 3541–3550 (2023) 
The monitoring system needs to divide the normal and abnormal
tar images to monitor the image quality. Convolutional neural
etworks (CNN) (Lawrence et al. 1997 ; Zheng et al. 2020 ) have
xcellent performance in classification tasks. CNN mainly includes
onvolution, pooling, and fully connected layers and uses the con-
olution kernel of the convolutional layer to extract image features.
fter multiple convolutional layers, the data is transmitted to the

ully connected neural network (FNN) and the softmax layer for
lassification. 

The monitoring system takes two steps. First, we use picture
eatures and the random forest algorithm (RF) to select normal
ictures captured by the acquisition camera or science camera; then,
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Figure 7. Relationship between image quality and staff. 
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Figure 8. Sub-KGs transfer to node chains. 
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e cut out and extract the single star image from the source image
f the picture (Hu et al. 2021 ). The star image size is measured by
he full width at half-maximum, and CNN classifies the star image 
hape. Details of the algorithm are given in Algorithm 1. 

lgorithm 1 Star image shape classification. 
equire: 
1: Science camera or acquisition camera picture, pic; 
2: Trained RF construct, RF ; 
3: Trained CNN construct, CN N ; 
nsure: Star image shape, s; 
4: Import the pic to RF , judge whether has bright star in picture; 
5: if No bright star is true then 

6: s is no bright star 
7: else 
8: Cut out the star image from pic; 
9: Import the star image to CN N ; 

10: State CNN output the s; 
11: end if 
12: return s; 

The star shape is divided into five according to the CNN classifi-
ation; when the shape of the star image deviates from the circle or
he size of the star image is too large, the monitoring system warns
he maintainer and feeds the image quality to the second component. 

.2 Knowledge graph result generation system 

elescope image quality KG contains the whole relationship of 
mage-quality-related entities and gives interpretable causes of 
hanges in the shape and size of telescope star images. According to
he core phrase of telescope image quality extracted by the IQMS,
he KRGS can generate the sub-KGs by the below steps: 

(1) Use the input core phrase to query in the KG-based query 
ystem to obtain the node A 0 with the core phrase as the name. 
(2) Nodes set S , which point to the A 0 , is got; 
(3) Find the all nodes which point to nodes contain in set S as new

odes set; 
(4) Repeat step (2) and (3) until they cannot find the new node. 

We can find the initial node, which no other nodes point to in the
G subgraph, and get the path from the initial node to the imaging
uality node. This process is shown in Fig. 8 ; the nodes on the path
nd relationships between the nodes construct the node chains. A 

ode chain represents an event that includes causality, and all node
hains are fed to the final estimator. The detail of the KRGS based
n LAMOST is provided in sub-section 4.2 . 

.3 Final Estimator 

RGS can find out the possible cause of poor telescope image quality,
ut it is necessary to give the probability of each reason for efficient
iagnosis. In this part, we use the node parameter, which contains
istorical fault data and real-time updated data from sensors, to give
he probability of each node chain. We assume that the more times
 certain fault causes this type of imaging quality in history, the
reater the probability that this type of image quality will be driven
y it again. 
Tuple (head entity, relationship, and end entity) describes an 

ction, and some tuples construct node chains. The probability of a
ode chain being the cause of poor imaging quality can be expressed
MNRAS 525, 3541–3550 (2023) 
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Figure 9. In the framework of the telescope maintenance support system, the left part realizes the imaging quality monitoring and the right part realizes the 
fault diagnosis. 
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s the multiplication of the probabilities of multiple actions being
stablished. Thus the probability P k of node chains k can be written
n the form below, 

 k = 

e t k / t sum ∑ 

l∈ S 
e t l / t sum 

∏ 

i,j ∈ U ∧ ( i→ j ) 

p ij , (2) 

where S is the set of whole node chains, U is the set of node’s
D of node chain k . And the p ij is the established probability of
ction, which construct by two nodes i and j . This action represents
 theorem if p ij = 1 is al w ays true. The t k is times the node chains
ave caused poor imaging quality, and t sum 

is the sum of times of this
ype of poor image quality in the history data. 

KGs can give the possible node chains, and we can get the
robability of the whole node chains and show the result to the
aintainer based on the final estimator . The IQMDS’ s framework is

emonstrated in Fig. 9 . 

 RESULT  A N D  DISCCUSION  

e have provided the core concepts of our method. In this section,
e exhibit the constructed details of the IQMDS based on LAMOST

nd use the idea of node importance in the KG to give the LAMOST
evices that need priority attention in daily maintenance. 

.1 IQMS based on LAMOST 

AMOST uses a segmented mirror-reflected Schmidt optics sys-
em with an active Schmidt corrector. It includes a thin-mirror
nd segmented-mirror active optics reflecting Schmidt corrector
Ma) including 24 sub-mirrors, a segmented-mirror active optics
pherical primary mirror (Mb) including 37 sub-mirrors, and a
.75 m focal surface (Cui et al. 2012 ). One sub-mirror of Ma
ontains three displacement actuators, 34 force actuators and three
xed support. One sub-mirror of Mb has a three-displacement
ctuator. 
NRAS 525, 3541–3550 (2023) 
We use the picture captured by the acquisition camera to monitor
he image quality. Through the feature selection, the number of
right stars, correlation, and standard deviation of pictures are
elected as input features of RF. The normal picture, according
o the RF, is exported to the convolution neural networks, which
ivide the star images into five categories: circular, tw o-point-lik e,
ump y-lik e, donut-lik e, and stick-lik e images. Then the circular
tar image’s full width at half-maximum is calculated. If the star
mage’s shape is circular and full width at half-maximum exceeds
.3 arcseconds, corresponding to the incidence angle of LAMOST
bre, the image quality is defined as the’big size star image’.
inally, if the classification result is abnormal, the result of the star

mage, which could be a lump y-lik e shape star image, donut-like
hape star image, stick-like shape star image, tw o-point-lik e shape
tar image, no bright star or big size star image, are exported to
RGS. 
We have adopted the CNN architecture directly from our prior

esearch. Comprehensiv e details re garding the CNN architecture and
raining procedures are available in reference (Hu et al. 2021 ). In Fig.
0 , we again pro vide e xamples of star images with various shapes
or training the CNN model. The 40 d observation data obtained
y the acquisition camera in 2019 and 2020 is used to train the
F and CNN models. The classification accuracy can reach 96.7
er cent. 

.2 Knowledge graphs result generation system based on 

AMOST 

o construct the LAMOST KG, first, we use expert experience
o arrange the LAMOST entities to a tuple form (head entity,
elationship, and tail entity), with the elements meaning the subject,
he predicate and the object, respectively. Then the entities and
elationships are extracted from the logbook, which records the
elescope fault and reason, to rich data. Entities and relationships
re catalogued in separate entity and relationship files. The entity file
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Figure 10. From top to bottom, the images represent different shapes of 
stars: normal star image, two-point star image, stick-like star image, lumpy- 
like star image, and donut-like star image. These star images serve as inputs 
for training the CNN. 
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ncompasses the attributes of the entities, as detailed in Section 2.2 .
onversely, the relationship file contains the IDs of the two nodes and

he relationship between them. Finally, we use the KG construction 
oftware NEO4J to form the KG. In Table 1 , we provide examples
rom the entity file. 

The LAMOST image-quality-related KG describes the relation- 
hip of entities and contains 1295 nodes and 1300 relationships. 
hrough the constructed KG, we use the cypher language to achieve 

hree functions: 
1. Match the input image quality to give a node chain pointing to

his node; 
2. Real-time update node parameters according to the received 

ensor data; 
3. Calculate the importance of nodes in the KG. 
A subgraph of the KG containing matching nodes is given for

he input image quality. Fig. 11 shows examples of stick-like star
mages, and the KG subgraph was obtained by matching it with the
onstructed LAMOST KG. The result shows that nine node chains 
an lead to a stick-like image. The node chain indicates the cause of
he poor imaging quality. 

.3 Final estimator and experiment based on simulation data 

he traditional fault possibility estimator only considers the his- 
orical fault probabilities. This history-data-based method based on 
istorical data uses the node chain with the highest historical fault 
robability as the diagnosis result, and the result of the estimator 
ill not change in the short term. The result can be expressed

s 

 k = 

t k 

t sum 

. (3) 

Our method combines the historical fault probabilities and the 
eal-time high-frequency data from sensors to give the probability 
f each node chain. Based on node parameters, our method calcu- 
ates the relationship’s establishing probability p ij between nodes i 
nd j . 

According to the preset parameter range of the telescope’s normal 
nd abnormal operation, p ij is 0 or 1, when the parameters are within
he normal set or abnormal set. The larger the difference dis a between
he value of the node parameter and the normal operation value 
ange and the less the difference dis b between the value of the node
arameter and the abnormal operation value range, the greater the 
robability of the action being established. The p ij can be written in
he form below, and the detailed definition of dis a and dis b is shown
n Fig. 12 . 

 ij = 

⎧ ⎨ 

⎩ 

0 value ∈ normal set 
dis a 

d is a + d is b 
value / ∈ range 

1 value ∈ abnormal set . 
(4) 

And now, some method based on the artificial neural networks 
ethod is used as an estimator. The FNN is the most common
ethod. FNN (Sainath et al. 2015 ) consists of an input layer, output

ayer, and several hidden layers, each of which contains neurons that
ransmit information to the neurons in the next layer. The input data
s transferred from the input layer and reaches the output layer, where
he target variable is predicted. 

Parameter Par ( k ) = [ a k (1) a k (2) . . . a k ( n ) ] of node chains k
onstruct a feature vector. The vector is imported to a fully connected
eural network, which can give the established possibility of the node
hain. To verify the ef fecti veness and adv antages of our method, we
ompare the e v aluation accuracy of the three approaches based on
he simulation data. The stick-like image’s final estimator with nine 
ossible fault causes is constructed, and the simulation data contains 
he parameter and target. The name and value range of parameters is
ho wn belo w: 

(i) Wind speed v w (0 to 10 m s −1 ). 
(ii) Wind direction v d (0 to 360 degree). 
(iii) Ma vertical angle a v (32.3 to 77.3 degrees). 
(iv) Ma azimuthal angle a a ( −20 to 20 degree). 
(v) Step length of the Ma vertical angle rotating motor l v a (0.01

o 1 arcsecond). 
(vi) Step length of the Ma azimuthal angle rotating motor l a a (0.01

o 1 arcsecond). 
(vii) Step length of the focal surface rotating motor l r (0.01 to 1

rcsecond). 
(viii) Step length of the focal surface displacement motor l d (0.01 

o 1 arcsecond). 
(ix) Step length of the focal surface alltitute motor 1 l a 1 (0.01 to

 arcsecond). 
(x) Step length of the focal surface alltitute motor 2 l a 2 (0.01 to 1

rcsecond). 
(xi) Step length of the focal surface alltitute motor 3 l a 3 (0.01 to

 arcsecond). 
(xii) Pressure of oil pad pre (0 to 300 V) 

The wind pressure P of Ma sacrify 

 = 

1 

2 
ρair V 

2 A, (5) 

where the ρair is air mass density, V is wind velocity, and A is
f fecti ve area of Ma exposed to wind. For the LAMOST, when
he wind speed exceeds 5.5 m s −1 in the Ma mirror plane’s normal
irection, the deformation of the mirror surface seriously affects the 
mage quality (Yang et al. 2005 ). At the same time, if the motor’s
teps and the oil pad voltage are not within the working range, the
elescope will be faulty. Therefore, the parameter relationship of the 
MNRAS 525, 3541–3550 (2023) 
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M

Table 1. The table showcases examples of four categories of entities employed in building the LAMOST KG: imaging quality, 
equipment, environment, and staff. The complete data set is accessible through the link provided in the data availability subsection. 

ID Class Lable Name Special properties 1 Special properties 2 

0 image quality image quality Stick like image – –
250 device focal plane focal attitude motor 01 step length –
1280 enviroment climatic conditions site wind wind speed wind direction 
1292 staff staff astronomor operation –

Figure 11. The right part is the stick-like star image; the middle part is constructed LAMOST KG; the left is the KG subgraph obtained by matching the’stick-like 
image’ in the LAMOST KG-based query system. 

Figure 12. The square represents the parameter point of the action to be 
e v aluated. The left subplot depicts a situation where the normal and abnormal 
data fall within a specific value range. In this context, dis a signifies the 
Euclidean distance from the points to be e v aluated to the nearest boundary 
point of the normal data set, while dis b denotes the Euclidean distance from 

the points to be e v aluated to the nearest boundary point of the abnormal data 
set. Conversely, the right subplot presents a scenario where the normal and 
abnormal data are represented as distinct points. Here, dis a corresponds to 
the average Euclidean distance from the points to be e v aluated to the points 
in the normal data set, and dis b relates to the average Euclidean distance from 

the points to be e v aluated to the points in the abnormal data set. 

s

t

 

r  

a  

s  

d  

a  

a  

a  

s
 

v  

t  

f  

a  

h  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/525/3/3541/7257586 by Xi'an Jiaotong-Liverpool U
niversity user on 12 Septem

ber 2023
NRAS 525, 3541–3550 (2023) 
imulation data and the corresponding faults are shown below, 

arget = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

a v w cos ( angle ( � v d , � m a )) ≥5 . 5 
b l v a ≥ 0 . 1 
c l a a ≥ 0 . 1 
d l r ≥ 0 . 1 
e l d ≥ 0 . 1 
f l a 1 ≥ 0 . 1 
g l a 2 ≥ 0 . 1 
h l a 3 ≥ 0 . 1 
i 240 ≥ pre ‖ pre ≥ 260 . 

(6) 

Where a : heavy wind shake Ma frame; b : Ma vertical angle
otation motor abnormal shake cause Ma frame; c : Ma azimuthal
ngle rotation motor abnormal shake cause Ma frame; d : focal
urface rotating motor abnormal shake focal surface; e : focal surface
isplacement motor abnormal shake focal surface; f : focal surface
ltitude motor 1 abnormal shake focal surface; g : focal surface
ltitude motor 2 abnormal shake focal surface; h : focal surface
ltitude motor 3 abnormal shake focal surface; i : uneven oil pad
hake Ma frame. 

The parameter’s value is obtained by random sampling within the
alue range. We only consider the one-fault cause situation. Among
he possible fault causes, the fault caused by the wind shaking Ma
rame accounted for 36 per cent, and the fault caused by each other
ccounted for 8 per cent. 80 per cent of the data is used to calculate the
istorical fault probability and train the FNN. The remaining 20 per
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Figure 13. A FNN architecture related to the event where strong winds cause 
the Ma mount to sway, ultimately leading to the stick-like star images. 

Table 2. The accuracy of the three methods. The result shows that our 
approach has similar accuracy to the FNN-based method and has higher 
accuracy than the history-data-based method. And FNN requires more data 
than our method to train parameters. 

Method Accuracy Training data 

History-data-based method 36.1 per cent small 
Our method 92.8 per cent small 
FNN-based method 94.9 per cent large 
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Figure 14. The distribution of history fault data is given, encompassing 34 
distinct fault types. The most pre v alent fault cause is ‘Ma device fault 4”. 

Table 3. The comparison of the prediction result based on our system and 
the truth fault cause. The result of our prediction is a node chain, and the 
initial node of the node chain is taken as the predicted fault cause. The cause 
of the fault is represented by the numbers given in Fig. 14 . 

Image quality Predict cause Truth cause 

lump y-lik e 4 © 4 ©
lump y-lik e 4 © 4 ©
tw o-point-lik e 3 © 3 ©
tw o-point-lik e 10 © 10 ©
tw o-point-lik e 10 © 10 ©
lump y-lik e 5 © 5 ©
tw o-point-lik e 3 © 9 ©
lump y-lik e 5 © 5 ©
tw o-point-lik e 10 © 10 ©
tw o-point-lik e 10 © 10 ©
stick-like 8 © 8 ©
lump y-lik e 4 © 4 ©
tw o-point-lik e 10 © 10 ©
lump y-lik e 4 © 4 ©
stick-like 8 © 8 ©
stick-like 14 © 7 © 14 ©
No bright star 19 © 19 ©
lump y-lik e 4 © 4 ©
No bright star 32 © 32 ©
stick-like 7 © 7 ©
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ent of the data is used to calculate the prediction accuracy. Fig. 13
resents a FNN architecture related to the event where strong winds 
ause the Ma mount to sway, ultimately leading to the stick-like star
mages. 

Using our method, we select the average values of parameters 
rom abnormal data points in the simulated data set to establish
eference points for calculating dis b . Additionally, we determine 
eference points for calculating dis a by using 20 per cent of the range
f normal values from the simulated data. For example, the normal 
ange for pressure is set between 248 and 252 V; the abnormal ranges
ould be defined as 0–120 V and 280–300 V. 
The accuracy of the three methods is shown in Table 2 . The result

hows that our method has similar accuracy to the FNN-based method 
nd has higher accuracy than the history-data-based method. A large 
mount of data and time need to train the FNN model, but telescopes
sually work in normal conditions, which means limited fault data 
an be collected. Building machine learning models using a few 

achines’ faulty samples is challenging to diagnose faults accurately. 
o we choose our method as the final estimator. 

.4 Experiment in LAMOST 

he IQMDS is constructed based on LAMOST data. We count the 
ogbook data from 2009 to 2022, and the cause of the fault is divided
nto 34. We calculated the probability of each fault cause, and the
istorical fault probabilities for various fault types are shown in Fig. 
4 . Given the lack of equipment parameters corresponding to the 
ault data, except for recent years, we determined the normal working 
ange and abnormal working range of the entity’s parameters through 
 xpert e xperience. 

Constructed system is used to predict the cause of 20 faults from
022 to 2023. The image quality and node parameters are found 
ccording to the fault time and imported into our system. The most
ossibility node chains are given. We represent the cause of the 
ault as a node chain. In contrast, the fault cause documented in
he maintenance log pertains to a specific entity’s fault. This is
ynonymous with the initial node name within the node chain. To
 v aluate, we juxtapose the initial node from the node chain against
he fault cause listed in the maintenance logbook. The comparative 
esults are displayed in Table 3 . 

The results show that our system can diagnose faults with an
ccuracy of 90 per cent and can be used for telescope image quality
onitoring and diagnosis. 

.5 Node importance 

ode importance can guide the system to allocate limited resources 
or entities of high importance. The nodes that are most likely to
MNRAS 525, 3541–3550 (2023) 
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ause fault can be highlighted by calculating the importance of
odes, which helps to impro v e the maintenance efficiency for a new
elescope which lacks the history data. 

Referring to the PAGERANK algorithm (Haveliwala 2003 ), we give
 method for calculating the importance of nodes. Assuming that the
stablished probability of the action is the same, it is 1/ n , where n
s the number of the relationship of the whole KG. The established
ikelihood of the path is (1/ n ) m , where m is the number of actions
n the path. The node importance is expressed as the sum of the
robabilities of all paths that take it as the initial node and take the
elescope imaging quality entity as the endpoint. 

According to the abo v e definition, we calculate the LAMOST KG
ode importance of different classes and find that: the most priority
ode of the device class is the submirror of Ma; the most priority
ode of the environment class is the atmosphere seeing. 

 C O N C L U S I O N S  

he proposed telescope IQMDS aim at real-time monitoring and
fficient diagnosis of the image quality. Our method uses star image
hape and size to represent the telescope image quality, then gives
he cause of poor image quality. Our proposed system can be divided
nto three components. First, an IQMS extracts the star image shape
nd size as telescope image quality . Secondly , a KRGS gives the
ossible cause of poor image quality . Thirdly , an estimator integrates
he second component and sensor results to provide the final fault
ause. 

The 40 d observation data obtained by the acquisition camera in
019 and 2020 are used to train the star image shape classification
odels. The classification accuracy can reach 96.7 per cent. The
AMOST image-quality-related KG is built up to describe the

elationship of four classes of entities, which contains 1295 nodes
nd 1300 relationships. The final estimator is constructed based on
he logbook data from 2009 to 2023 yr. Our system showed good
erformance in LAMOST. 
The prospects for KGs more applications in the telescope are

ssential to discuss and achiev e. F or e xample, we can use the device
rand as a device parameter to obtain more reliable products, use the
tructure of node chains to train the machine learning model, and
hen use the model to predict potential causes of the fault. 
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